High-Precision Tracking with Large Pixels using Thin Resistive Silicon Detectors

This talk focuses on the spatial resolution of RSD sensors

N. Cartiglia UFSD group

Image courtesy of M. Tornago

Aide memoire: RSD principle of operation

AC signals (red) are measured on the pads DC signal (green) on the resistive layer

The signal sees several impedances Z_i in parallel, and it is split according to Ohm's law.

Each pad gets a share S_i of the total signal, exactly as in a current divider

The FBK RSD2 production

Goals for RSD2: Optimized signal sharing for uniform performance

- Optimize the fabrication parameters (resistivity, oxide, gain layer)
- Reduce as much as possible the metal area of the pads
- Design electrodes shape that would maximize the response uniformity obtained with the collected charge

Details on RSD2:

- M. Mandurrino, "RSD2, the new production of AC-LGADs at FBK", 39th RD50,
- F. Siviero, "First experimental results of the spatial resolution of RSD pad arrays ..." VCI2022

Experimental set-up

The Particulars TCT laser setup has been used:

- IR laser generates a signal in the RSD,
- simulating the passage of a MIP
- laser spot size ~ 8 μm
- Laser temporal precision: ~ 8 ps
- movable x-y stage provides reference positions of the laser shots, precision: $\sigma_{\text{Laser}} \sim 2\,\mu\text{m}$

Sensors are read out with 16-ch fast analogue board, developed at FNAL

The signals are recorded with16-ch CAEN Digitizer (5 Gs)

RSD2 sensors with cross-shaped electrodes

In this study, the perfomance of sensors with electrodes shaped as crosses is presented.

4 different dimensions: 200, 340, 450, and 1300 μm

Pitch = 450 μ m

(A) 200 x 340 μm²

(C) Pitch = 1300 μm

RSD2 W15 gain

All structures belong to W15, For reference, this is the gain curve

Area of the DC-signal in the 1300 x 1300 μm^2 pixel.

The amount of charge injected by the laser has been measured using the area of the DC-signal.

Note: in some plots, values of gain > 30 are reported. These are achieved by increasing the laser intensity to about 3 MIP while keeping the bias in the range 250V-330V. This feature is indicated as "**gain equivalent**"

Hit position resolution

$$\sigma_{hit}^2 = \sigma_{jitter}^2 + \sigma_{signal}^2 + \sigma_{reconstruction}^2 + \sigma_{sensor}^2$$

 σ_{jitter}^2 : contribution due to the electronic noise. This term determines the measurement precision. See next slide

 σ^2_{signal} : systematic error in the reconstruction of the signal amplitude. For example, the amplitude, due to the fitting method to determine the maximum of the gaussian, has a 1% systematic error.

 $\sigma^2_{reconstruction}$: Possible systematic errors in the reconstruction program, the position is always shifted in x or y. This determines the measurement accuracy.

 σ^2_{sensor} : this term groups all sensor imperfections. For example, uneven n+ resistivity

Position Jitter

The main component of the position resolution is the position jitter, defined as:

Imagine a system with a single read-out pad where a hit generates:

- A signal of 100 mV when shot near a pad
- A signal of 0 mV when shot at the opposite corner
- Noise ~1 mV (as in our lab)

In this simplified system, the signal decreases by:

- Pitch 1300 μm: 0.05 mV/μm
- Pitch 450 μm: 0.15 mV/μm

So, the jitter is:

- Pitch 1300 μ m: 1 mV/(0.05 mV/ μ m) = 20 μ m
- Pitch 450 μ m: 2 mV/(0.15 mV/ μ m) = 7 μ m

With increasing number *n* of AC-read-out pads, the jitter becomes larger as $\sigma_{jitter} \propto \sqrt{n}$ ==> keep the number of read-out pads involved as small as possible

Recontruction method

In RSD1 we develop an analytical reconstruction method.

This was efficient since there were well defined paths between the hit point and the read-out pads

In RSD2, this is quite difficult as there are multiple paths to a given read-out pad.

For this reason, we use a data-driven approach

Step 1: position reconstruction using charge imbalance

In this analysis, the 4 pads with the highest signals are used.

4 pads are readout, all others connected to gnd Reconstruction method via charge imbalance:

$$x_{i} = x_{center} + k_{x} \frac{pitch}{2} * \frac{Q_{3} + Q_{4} - (Q_{1} + Q_{2})}{Q_{tot}}$$
$$y_{i} = y_{center} + k_{y} \frac{pitch}{2} * \frac{Q_{1} + Q_{3} - (Q_{2} + Q_{4})}{Q_{tot}}$$
$$k_{x} = \frac{Q_{tot}}{Q_{3} + Q_{4} - (Q_{1} + Q_{2})}|_{x@edge}$$
$$k_{y} = \frac{Q_{tot}}{Q_{1} + Q_{3} - (Q_{2} + Q_{4})}|_{y@edge}$$

Step 2: evaluate the performance of the reconstruction

First take-home result: even without any additional correction, the crossshaped electrodes provide a fairly accurate reconstruction Second take-home result: near the pads, the reconstructed positions are systematically shifted with respect to true positions

Step 3: measure the migration map

Compute the migration map:

For each laser position, connect the true and reconstructed positions.

Step 4: apply the correction

600

600

800

1000 1200 1400

1000

1200

1400 1600

V farm

Raw data

Note: a 30 microns minimum distance from the metal electrodes has been used to ensure the laser shot is fully on the open silicon.

Migration, after correction, is limited

Example: $1300 \times 1300 \ \mu m^2$, gain = 33

(True-reconstructed) x,y coordinates for the 1300 x1300 μ m² sensor, gain = 33 The non-gaussian tails are due to the reconstruction near the corners, where migration is the highest

Result for 1300x1300 μ m²

RSD2 Crosses 1300 um

- The position resolution is dominated by the jitter term
- Other contributions are sub-leading •
- At gain ~ 30, σ_{jitter} ~ 35 μm

Systematic check: rotate the migration matrix

Apply to the data the migration matrix straight and rotated by 180 degrees

This procedure checks the sensor uniformity and differences in the read-out amplifiers

Resolution of straight and rotated migration matrix

In small pixels, for equal gain, the signal-to-noise ratio is worse since part of the signal leaks to pads not used in the reconstruction

AC Signal and DC Signals

In small pixels, the sum of the AC signals the closest 4 read-out pads contains only about 60% of the total AC-signal (with respect of large pixels).

Results: resolution vs gain (4 different pitches)

RSD2 Crosses 200 um

Note: high-gain signals are obtained using a 3 MIP laser setting

Z

Summary: resolution vs pitch

The position resolution is very good

- Using only 4 read-out pads, the resolution in small structures is limited by the excessive signal spread
- The best relative resolution is about 3% of the pitch

Resolution vs Sum of 4 amplitudes (4 different pitches)

The jitter reproduces quite well the overall resolution vs amplitude trend

RSD2 Crosses 200 - 340 um

160

160

RSD2 Crosses 200 - 340 um

Note: one single normalization for the 4 pitch sizes

How to improve performances

The resolution is dominated by the jitter term

==> limited by the electronic noise.

The electronics used for this study is "fast electronics":

large bandwidth, high noise

Clearly, the wrong choice if you simply want the amplitude

Low-noise small bandwidth electronics might lead to significant improvements. If shaping time increases by 10 ns, the noise decreases by about 3

Conclusions

The FBK – RSD2 production has been designed to:

- Have uniform spatial resolution over the pixel surface
- Explore different read-out layouts.

This analysis explores the spatial resolution of sensors with crossed-shaped electrodes.

4 pitch sizes: 200, 340, 450, and 1300 microns

Spatial resolution depends upon ~ 1/gain, ~ 1/pitch, and ~noise

For all pitch sizes, the resolution is dominated by the jitter term

==> Improvement with low-noise electronics

At gain = 30, the spatial resolution is:

- Pitch = 200 μ m ==> $\sigma_x \sim 17 \mu$ m; σ_x /pitch ~ 8%
- Pitch = 340 μ m ==> $\sigma_x \sim 21 \mu$ m; σ_x /pitch ~ 6%
- Pitch = 450 μ m ==> $\sigma_x \sim 16 \mu$ m; σ_x /pitch ~ 3%
- Pitch = 1300 μ m ==> $\sigma_x \sim 40 \mu$ m; σ_x /pitch ~ 3%

Using only 4 read-out pads, in small-pitch sensor,

the signal leakage to neighboring pixels limits the resolution.

This effect can be lowered by increasing the surface resistivity: next round of tests...

