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Schottky diode fabrication and model
• Geometry of the Schottky diode

• diameter of Al cathode = 0.5mm
• epi layer thickness = 50 µm
• 10mm x 10mm dices

• high resistivity doping 10^13 p-epi 
• Irradiation

• Neutron irradiation
• 1012, 1013, 1014, 1015, 1016 1MeV neq/cm2

• Thermal annealing (80/60) to put them all in the same annealed condition
• Diodes diced from the same wafer as the Irradiated diodes

• TCAD simulation – use cylindrical symmetry to simulate the full device 
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Schottky diodes barrier

• equation expresses the Schottky diode current assuming thermionic emission

• In a Schottky barrier, effects due to Fermi pinning at ϕo and presence of interface states, Dint, between 

metal and Si, with proper density and energy distribution, needs taking into account

• Also depending on the fabrication process, thin dielectric layer δ might be present at metal / Si interface

• from I(V) thermionic formula for Schottky diode, including Rs of bulk ,we can determine 𝜙𝑏0 and infer 

ideality factor n (V)

1: 𝐼 = 𝑆𝐴∗𝑇2 exp −
𝑒

𝑘𝑇
𝜙𝑏0 exp

𝑒

𝑛𝑘𝑇
𝑉 = 𝐼0 exp

𝑒

𝑛𝑘𝑇
𝑉

S: area of the device [cm2] A*: Richardson’s constant 32 [for P-type Si, A cm-2 T-2] T: temperature [K]        e: electron charge

Φb0 : barrier height between semiconductor and Al/SiO2 [eV] n: ideality factor Rs : bulk resistance

log plot ,extrapolate V = 0
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ideality factor n (V)
Rs

< Φ𝑏𝑜>= 630.5 [𝑚𝑉]

• Barrier height extracted from IV curve

• From Ideality factor, infer density of interface states vs. energy (H C Card and E H Rhoderick 1971 

J. Phys. D: Appl. Phys. 4 1589)

• It should be possible to infer bulk doping from Rs still to be investigated
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Measured Dint

• Energy distribution profile of interface state 

densities Dint from ideality factor

• 0.5 mm Al/p-Si non-irradiated and 1e15 n-

irradiated Schottky diodes

• Assumed native oxide layer (SiO2) 𝛿 thickness 1, 

1.5 and 2 nm

• wafers were left exposed in air after etching and 

prior to Al sputtering

• neglect extension of W in forward region

• Expected decrease of density of states for higher 

energy - pinning located > 600 meV
• Irradiated data noisy 

e: electron charge

Eint : interface states energy

EV : top of valence band energy

Ψs0 : diffusion potential

ΦB0 : barrier height between semiconductor

and Al/SiO2

n: ideality factor

𝜀s / 𝜀ox : Si /SiO2 permittivity 

𝛿: interface layer thickness

NA :doping concentration

W :depletion width
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• For simulations take an average of Dint for non-irradiated and irradiated vs. δ and infer neutral level 𝜙0

• TCAD expect CNL (i.e. 𝐸𝑔 + 𝜒𝑠𝑖 +𝜓𝑠0 − 𝜙0) w.r.t. vacuum level, not Ev

• It seems only single value, not spectrum are allowed in electrode parameter

• Include Schottky barrier lowering, full band to band h+ tunnelling from cathode, Si-SiO2 interface states

𝜑𝐵0 = 𝛾 ∙ 𝐸𝑔 + 𝜒𝑠𝑖 − 𝜙𝑚 + 1 − 𝛾 ∙ 𝜙𝑜

𝛾 =
𝜀𝑜𝑥

𝜀𝑜𝑥 + 𝑞2 ∙ 𝛿 ∙ 𝐷𝑖𝑛𝑡

𝐷𝑖𝑛𝑡 = 1.95 𝑒14 𝛿 = 1𝑛𝑚
𝐷𝑖𝑛𝑡 = 1.3 𝑒14 𝛿 = 1.5𝑛𝑚
𝐷𝑖𝑛𝑡 = 9.775 𝑒13 𝛿 = 2𝑛𝑚
𝜙𝐵𝑂~ 0.63 𝑒𝑉
𝜙𝑜~ 0.65 𝑒𝑉

Electrode = "CathodeR"  {
Schottky {
###Fermi pinnning params

Pinning_d =@dint_thick@
Pinning_CNL =@CNL@  
Pinning_Nint =@Nint@

###Barrier lowering params 
InsBL_tox = 1e-7

}  
}

Eg : band gap

𝜒Si : electron affinity of Si

ϕm : metal workfunction

Φ0 : neutral level

𝜀ox : SiO2 permittivity 

𝛿: interface layer thickness

𝐷𝑖𝑛𝑡 = 6.57 𝑒14 𝛿 = 1𝑛𝑚
𝐷𝑖𝑛𝑡 = 4.38 𝑒14 𝛿 = 1.5𝑛𝑚
𝐷𝑖𝑛𝑡 = 3.28 𝑒14 𝛿 = 2𝑛𝑚
𝜙𝐵𝑂~ 0.604 𝑒𝑉
𝜙𝑜~ 0.622 𝑒𝑉

non-irrad

1e15 n-irrad
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CTH GR

GR

0 V 500 V

P-epi

P-epi

• Non-irradiated, depletion region vs. bias voltage with GR grounded

• Extension of depletion region ~ GR before BV (unrealistic, with OxIntcharge 5e11) , up to ~ 150 µm with 0 

OxIntcharge

0 V 500 V

CTH

* Effects of Interface Donor Trap States on Isolation Properties of 

Detectors Operating at High-Luminosity LHC, DOI: 

10.1109/TNS.2017.2709815

T = 300 K

0 Oxcharge
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T = 300 K
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T = 300 K
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GR

Depletion regions vs. bias voltage for different levels of OxIntCharge, non-irradiated

P-epi
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• Implementing the HPT (Hamburg Pentatrap model)
• A factor 1.66 applied to gint to account for n-irradiation
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TCAD neutron irradiation

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0 100 200 300 400

I (
A

)

Reverse Bias (V)

TCAD Neutron irradiation 1E15



Matt Kurth  40th RD50 workshop 9

PCB
Al plate
Peltier 

Water heat sink

Spacer to raise chip 
<10mm to window  

• Box designed to achieve these goals:
• Temperature control down to -20 C

• Keep the environment dry to 5% RH

• Shield signal from laser’s EMP

• Small enough to fit on laser stage 

• Temp/humidity readout

• Window IR transparent/homogeneous

• Limit to < 1 cm from diode to window to 
allow optical focus

Dry/Cold box for charge collection

Lid on

bottomLid off

21/6/2022
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PCB
Al plate
Peltier 

Water heat sink

• A Grant water chiller is plumbed into the water heat sink

• Water chiller run with DI water at 5 C

• The Peltier is powered with variable power supply up to 6A to 
achieve -20 C

• 4 layers are bolted together with thermal paste for heat 
transfer

• Humidity and temp measured with HYT221 
Accurate for low humidity and temp 

• HYT221 placed on surface of PCB with thermal paste to 
obtain same temp as diodes 

• The humidity and temp read out with raspberry pi 

Temp control and monitoring

HYT221 sensor Temperature Humidity

Operating Range - 40 C to 125 C 0 % RH to 100 % RH

Accuracy 0.2 C 1.8 % (0 – 90 %)

ET -127-20-15 Peltier Module

Max current 13.1 A

Δ T max 74

21/6/2022
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• The laser has a built-in camera that allows the 
illumination of shutter with red light

• Shutter can close to a gap of 5um for charge 
collection measurements between cathode and 
guard ring

• The cold/dry box is moved with a stage that can 
move with 1 um increments

• The laser output is calibrated with the acrylic 
window to 50 pJ

• Signal is fed into a charge amplifier (CoolFET A250CF 
Amptek) and readout on oscilloscope 

5 mm ESD safe Acrylic
window

Lab Setup

Live camera

21/6/2022

Cathode
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• QuikLaze Trilite was repurposed 

• Designed for microelectronics machining
• Filters to significantly reduce the power
• 1064 nm wavelength used

• Calibrated to 50 pJ with a Sd = 1.9 pJ

• Calibrated with PD10-pJ-v2 through Acrylic 
window

• 50pJ chosen as a low energy reliably could be 
measured with PD10-pJ-v2

• Tested Acrylic homogeneity and variation 
across window wasn’t seen 

• Fan blows over top of window to prevent 
condensation when held at -20 C

• Oscilloscope used to measure amplitude from 
charge sensitive pre-amp 

• The laser was set as the trigger
• The EMP from laser was consistent and noise 

subtracted to see smooth distribution
• ~100 ns delay of signal from trigger
• ~70 ns rise time

5 mm ESD safe Acrylic window

Thickness assists in reduction of 
condensation on outer surface

Energy (pJ)

C
o

u
n

ts

Laser Energy distribution

21/6/2022

Laser and signal



Matt Kurth  40th RD50 workshop 13

• depletion region is within 100 um of the cathode as the charge detection decays

• Increase of temp will increase the charge collection 

• Irradiated diode decreases the charge collection and shrinks the depletion region

• Leakage current too high to make measurement at room temp for irradiated chip which 
current charge amplifier

Charge Collection Measurements

cathode

Guard 
ring

21/6/2022
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➢ Non-irradiated, depletion region vs. bias voltage with GR grounded

➢ Extension of depletion region ~ GR before BV (unrealistic, with OxIntcharge 5e11) , up to ~ 150 µm with 0 

OxIntcharge

➢ Substrate and GR grounded with bias supplied to the cathode

* Effects of Interface Donor Trap States on Isolation Properties of 

Detectors Operating at High-Luminosity LHC, DOI: 

10.1109/TNS.2017.2709815

TCAD simulation comparison to data
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Edge of cathode and start of charge collection measurements

400 V
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• The leakage current exponentially increases with temp – second method to calc the barrier height

• Irradiated diode has an increases leakage current by a factor >50
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Conclusions and Outlook

• Fabricated Schottky diodes on 5 6-inch p-type wafers (3 high resistivity 
10^13 epi doping and 2 medium 10^14/10^15)

• High resistivity wafer works well, no early breakdown [breakdown >600V]

• Tested 500µm devices for IV/CV and charge collection with neutron 
irradiated up to 10^16

• Plan to test with protons and different device flavors (1 and 2mm sizes)

• Continue TCAD parameter optimization to agree with charge collection and 
AC/DC measurements for irradiated and non-irradiated devices  
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Backup
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FWD IV – GR floating
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REV IV – GR floating
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REV IV – GR grounded

different from each other
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REV IV – GR at the same potential as cathode
diode at the corner

diode #2: different from others
its CV not measured 
diode measured #4 instead
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CV – GR floating Plot of each diode looks similar
Just diodes #1 shown here
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CV – GR floating Zoom in
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