

Institute of High Energy Physics Chinese Academy of Sciences

Update on Radiation damage investigation of epitaxial P-type Silicon using Schottky diodes

Giulio Villani, <u>Matt Kurth</u>, Yebo Chen, Hongbo Zhu, Peilian Liu Thomas Koffas, Fergus Wilson, Igor Mandic, Christoph Klein, Garry Tarr, Robert Vandusen

21/6/2022

Matt Kurth 40th RD50 workshop

Cathode

10mm

p-epi

Guard Ring

D-Sub

Schottky diode fabrication and model

- Geometry of the Schottky diode
 - diameter of Al cathode = 0.5mm ٠
 - epi layer thickness = $50 \,\mu m$ ٠
 - 10mm x 10mm dices
 - high resistivity doping 10^13 p-epi
 - Irradiation
 - Neutron irradiation
 - 10¹², 10¹³, 10¹⁴, 10¹⁵, 10¹⁶ 1MeV n_{eq}/cm^2
 - Thermal annealing (80/60) to put them all in the same annealed condition ٠

0.5 mm

√0.15 mm

CTH

- Diodes diced from the same wafer as the Irradiated diodes
- TCAD simulation use cylindrical symmetry to simulate the full device

Schottky diodes barrier

$$1: I = SA^*T^2 \exp\left(-\frac{e}{kT}\phi_{b0}\right) \exp\left(\frac{e}{nkT}V\right) = I_0 \exp\left(\frac{e}{nkT}V\right) \xrightarrow{\log plot, extrapolate V = 0} \phi_{b0} = \frac{kT}{e} \ln\left(\frac{SA^*T^2}{I_{v=0}}\right)$$

$$2: I = SA^*T^2 \exp\left(-\frac{e}{kT}\phi_{b0}\right) \exp\left(\frac{e}{nkT}(V - R_sI) \xrightarrow{\log plot, extrapolate V = 0} \frac{dV}{dln(I)} = \frac{nKT}{e} + R_sI$$

S: area of the device $[cm^2]$ A*: Richardson's constant 32 [for P-type Si, A cm⁻² T⁻²] T: temperature [K] e: electron charge Φ_{b0} : barrier height between semiconductor and Al/SiO2 [eV] n: ideality factor R_s : bulk resistance

- equation expresses the Schottky diode current assuming thermionic emission
- Also depending on the fabrication process, thin dielectric layer δ might be present at metal / Si interface
- from I(V) thermionic formula for Schottky diode, including Rs of bulk ,we can determine ϕ_{b0} and infer ideality factor n (V)

IV curve – Barrier height extraction

- Barrier height extracted from IV curve
- From Ideality factor, infer density of interface states vs. energy (H C Card and E H Rhoderick 1971 *J. Phys. D: Appl. Phys.* **4** 1589)
- It should be possible to infer bulk doping from R_s still to be investigated

Measured D_{int}

$$D_{int}(V) = \frac{1}{e} \left(\frac{\varepsilon_{ox}}{\delta} (n(V) - 1) - \frac{\varepsilon_s}{W(V)} \right)$$

$$W(V) = \sqrt{\frac{2\varepsilon_s}{eN_A}\psi_s} = \sqrt{\frac{2\varepsilon_s}{eN_A}\left(\psi_{s0} - \frac{V}{n}\right)}$$

 $E_{int} - E_V = e \left(\Phi_{B0} - \frac{V}{n(V)} \right)$

- e: electron charge E_{int} : interface states energy E_V : top of valence band energy Ψ_{s0} : diffusion potential Φ_{B0} : barrier height between semiconductor and Al/SiO2 n: ideality factor $\varepsilon_s / \varepsilon_{ox}$: Si /SiO2 permittivity δ : interface layer thickness N_A : doping concentration W: depletion width
- Energy distribution profile of interface state densities Dint from ideality factor
- 0.5 mm Al/p-Si non-irradiated and 1e15 nirradiated Schottky diodes
- Assumed native oxide layer (SiO2) δ thickness 1, 1.5 and 2 nm
- wafers were left exposed in air after etching and prior to AI sputtering
- neglect extension of W in forward region
- Expected decrease of density of states for higher energy - pinning located > 600 meV
- Irradiated data noisy

Density of interface states

$$\varphi_{B0} = \gamma \cdot \left(E_g + \chi_{si} - \phi_m\right) + (1 - \gamma) \cdot \phi$$
$$\gamma = \frac{\varepsilon_{ox}}{\varepsilon_{ox} + q^2 \cdot \delta \cdot D_{int}}$$
$$E_g: \text{band gap}$$
$$\chi_{Si}: \text{electron affinity of Si}$$
$$\phi_m: \text{metal workfunction}$$
$$\Phi_0: \text{neutral level}$$
$$\varepsilon_{ox}: \text{SiO2 permittivity}$$
$$\delta: \text{interface layer thickness}$$

 $\begin{array}{l} \overline{D_{int}} = 1.95 \ e14 \ \delta = 1 nm \\ \overline{D_{int}} = 1.3 \ e14 \ \delta = 1.5 nm \\ \overline{D_{int}} = 9.775 \ e13 \ \delta = 2 nm \\ \phi_{BO} \sim 0.63 \ [eV] \\ \phi_o \sim 0.65 \ [eV] \end{array}$

 $\begin{array}{l} \overline{D_{int}} = 6.57 \ e14 \ \delta = 1 nm \\ \overline{D_{int}} = 4.38 \ e14 \ \delta = 1.5 nm \\ \overline{D_{int}} = 3.28 \ e14 \ \delta = 2 nm \\ \phi_{BO} \sim 0.604 \ [eV] \\ \phi_o \sim 0.622 \ [eV] \end{array}$

Electrode = "CathodeR" { Schottky { ###Fermi pinnning params Pinning_d =@dint_thick@ Pinning_CNL =@CNL@ Pinning_Nint =@Nint@

```
###Barrier lowering params
InsBL_tox = 1e-7
    }
}
```

- For simulations take an average of D_{int} for non-irradiated and irradiated vs. δ and infer neutral level ϕ_0
 - TCAD expect CNL (i.e. $E_g + \chi_{si} + \psi_{s0} \phi_0$) w.r.t. vacuum level, not E_v
 - It seems only single value, not spectrum are allowed in electrode parameter
- Include Schottky barrier lowering, full band to band h⁺ tunnelling from cathode, Si-SiO2 interface states

TCAD modeling

Interface Defect	Level	Concentration	σ
Acceptor	E _C -0.4 eV	40% of acceptor NIT	0.07 eV
-		$(N_{IT}=0.85 \cdot N_{OX})$	
Acceptor	E _C -0.6 eV	60% of acceptor N _{IT}	0.07 eV
		$(N_{IT}=0.85 \cdot N_{OX})$	
Donor	E _v +0.7 eV	100% of donor N _{IT}	0.07 eV
		$(N_{IT}=0.85 \cdot N_{OX})$	

* Effects of Interface Donor Trap States on Isolation Properties of Detectors Operating at High-Luminosity LHC, DOI: 10.1109/TNS.2017.2709815

- Non-irradiated, depletion region vs. bias voltage with GR grounded
- Extension of depletion region ~ GR before BV (unrealistic, with OxIntcharge 5e11), up to ~ 150 µm with 0 OxIntcharge

TCAD neutron irradiation

Defect	Туре	Energy	g_{int} [cm ⁻¹]	σ_e [cm ²]	σ_h [cm ²]
E30K	Donor	E _C -0.1 eV	0.0497	2.300E-14	2.920E-16
V_3	Acceptor	E _C -0.458 eV	0.6447	2.551E-14	1.511E-13
I_p	Acceptor	E _C -0.545 eV	0.4335	4.478E-15	6.709E-15
H220	Donor	E_V +0.48 eV	0.5978	4.166E-15	1.965E-16
C_iO_i	Donor	E_V +0.36 eV	0.3780	3.230E-17	2.036E-14

- Implementing the HPT (Hamburg Pentatrap model)
- A factor 1.66 applied to g_{int} to account for n-irradiation

Dry/Cold box for charge collection

Al plate Peltier

Water heat sink

Spacer to raise chip

<10mm to window

- Box designed to achieve these goals:
 - Temperature control down to -20 C
 - Keep the environment dry to 5% RH
 - Shield signal from laser's EMP
 - Small enough to fit on laser stage
 - Temp/humidity readout
 - Window IR transparent/homogeneous
 - Limit to < 1 cm from diode to window to allow optical focus

Temp control and monitoring

- A Grant water chiller is plumbed into the water heat sink
- Water chiller run with DI water at 5 C
- The Peltier is powered with variable power supply up to 6A to achieve -20 C
- 4 layers are bolted together with thermal paste for heat transfer
- Humidity and temp measured with HYT221
 Accurate for low humidity and temp
- HYT221 placed on surface of PCB with thermal paste to obtain same temp as diodes
- The humidity and temp read out with raspberry pi

7	

T -127	7-20-15	5 Peltier	Module
- 1 - 1 - 1			i i i i u u u u

Max current	13.1 A
Δ T max	74

HYT221 sensor	Temperature	Humidity
Operating Range	- 40 C to 125 C	0 % RH to 100 % RH
Accuracy	0.2 C	1.8 % (0 – 90 %)

Lab Setup

- The laser has a built-in camera that allows the illumination of shutter with red light
- Shutter can close to a gap of 5um for charge collection measurements between cathode and guard ring
- The cold/dry box is moved with a stage that can move with 1 um increments
- The laser output is calibrated with the acrylic window to 50 pJ
- Signal is fed into a charge amplifier (CoolFET A250CF Amptek) and readout on oscilloscope

Laser and signal

- QuikLaze Trilite was repurposed
 - Designed for microelectronics machining
 - Filters to significantly reduce the power
 - 1064 nm wavelength used
- Calibrated to 50 pJ with a Sd = 1.9 pJ
 - Calibrated with PD10-pJ-v2 through Acrylic window
 - 50pJ chosen as a low energy reliably could be measured with PD10-pJ-v2
 - Tested Acrylic homogeneity and variation across window wasn't seen
 - Fan blows over top of window to prevent condensation when held at -20 C
- Oscilloscope used to measure amplitude from charge sensitive pre-amp
 - The laser was set as the trigger
 - The EMP from laser was consistent and noise subtracted to see smooth distribution
 - ~100 ns delay of signal from trigger 21/6/22@As rise time

Charge Collection Measurements

- Increase of temp will increase the charge collection
- Irradiated diode decreases the charge collection and shrinks the depletion region
- Leakage current too high to make measurement at room temp for irradiated chip which current charge amplifier

cathode

TCAD simulation comparison to data

* Effects of Interface Donor Trap States on Isolation Properties of Detectors Operating at High-Luminosity LHC, DOI: 10.1109/TNS.2017.2709815

- > Non-irradiated, depletion region vs. bias voltage with GR grounded
- Extension of depletion region ~ GR before BV (unrealistic, with OxIntcharge 5e11), up to ~ 150 µm with 0 OxIntcharge
- Substrate and GR grounded with bias supplied to the cathode

Dry/Cold box for charge collection

- The leakage current exponentially increases with temp second method to calc the barrier height
- Irradiated diode has an increases leakage current by a factor >50

21/6

Conclusions and Outlook

- Fabricated Schottky diodes on 5 6-inch p-type wafers (3 high resistivity 10^13 epi doping and 2 medium 10^14/10^15)
- High resistivity wafer works well, no early breakdown [breakdown >600V]
- Tested 500 μm devices for IV/CV and charge collection with neutron irradiated up to 10^16
- Plan to test with protons and different device flavors (1 and 2mm sizes)
- Continue TCAD parameter optimization to agree with charge collection and AC/DC measurements for irradiated and non-irradiated devices

Backup

FWD IV – GR floating

REV IV – GR floating

REV IV – GR grounded

21/6/2022

REV IV – GR at the same potential as cathode

CV – GR floating

Plot of each diode looks similar Just diodes #1 shown here

CV – GR floating

Zoom in

