

Study of depth-dependent charge collection profiles in irradiated pad diodes

M. Antonello, E. Garutti, M. Hajheidari, J. Schwandt, G. Steinbrück

Institute for Experimental Physics, University of Hamburg

40th RD50 Workshop, CERN

Introduction

- Luminosity in the CMS Phase-2 is up to $7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.
- This causes a neutron equivalent fluence of $3.5 \times 10^{16} \text{cm}^{-2}$ (after 4000 fb⁻¹)
- in the first layer of the inner tracker.
- The radiation damage changes the electric field and trapping times of the sensors used in the inner tracker.

The motivation of this talk

• Study the charge collection in highly irradiated silicon diodes which provides precise data for testing simulation of irradiated silicon sensors

The tool of study

• Edge-on measurement using electron beam with an energy of 5.2 GeV

The performed measurements

• Charge profiles of non-irradiated and irradiated diodes at different bias voltages

Edge-on measurements with pad diodes

The method was introduced in previous RD50 workshop (37^{th} RD50) The measurement results were shown for four irradiated pad diodes (38^{th} RD50)

In this talk:

- The measurements results are compared with results of radiation damage models
- The data are unfolded to extract CCE profile as a function of depth.

Measurement setup

DESY II beam test facility:

- Electron/positron beam with energy of 1-6 GeV
- Beam energy of 5.2 GeV was chosen for the measurements
- Intrinsic resolution of each plane of telescope $\approx 3.2 \,\mu m$
- Timing reference module for reducing in-time pile up
- Scintillator for providing the readout trigger
- Rotation stage for the DUT with a precision of 0.10°(1.7 mrad)

Specifications of the diodes

- Nominal thickness 150 µm
- Area ≈ 25 and 12.5 mm²
- p-type (n⁺pp⁺ configuration)
- Doping concentration $\approx 4.5 \times 10^{12} \text{ cm}^{-3}$
- Depletion voltage 75 V
- Manufactured by Hamamatsu Photonic K.K (HPK)
- Guard-ring is floating

Top view (dimensions are in micrometer)

 12.5 mm^2

For irradiation study

- Irradiation with 23 MeV protons at Karlsruhe Institute of Technology (KIT)
- Irradiation to 1 MeV equivalent fluence $\Phi_{eq} = 2$, 4, 8 and 12×10^{15} cm⁻² (hardness factor of $\kappa = 2.2$)

RD50 workshop, 21-24 June 2022	Mohammadtaghi Hajheidari University of Hamburg		5
---------------------------------------	---	--	---

Measurement results

$$\Phi_{\rm eq} = 2 \times 10^{15} \rm cm^{-2}$$

$$\Phi_{eq} = 4 \times 10^{15} cm^{-2}$$

RD50 workshop, 21-24 June 2022

Mohammadtaghi Hajheidari University of Hamburg

6/22

Measurement results

 $\Phi_{\rm eq} = 8 \times 10^{15} \rm cm^{-2}$

 $\Phi_{eq} = 12 \times 10^{15} \mathrm{cm}^{-2}$

RD50 workshop,	21-24 June 2022
----------------	-----------------

Hamburg Penta Trap Model

The model is optimized to describe the following experimental data:

- Capacitance versus Voltage (CV)
- Current versus Voltage (IV)
- Charge Collection Efficiency (CCE) versus Voltage The data are taken for pad diodes:
- Active thickness: 200 μ m

RD50 w

- Irradiation with 24 GeV protons at CERN PS facility
- Irradiation to equivalent fluence $\Phi_{eq} = 0.3$, 1, 3, 6, 8, 13×10^{15} cm⁻²

Defect	Туре	Energy	g _{int} [cm ⁻¹]	σ_e [cm ²]	σ_h [cm ²]
E30K	Donor	E _C -0.1 eV	0.0497	2.300E-14	2.920E-16
V_3	Acceptor	E_{C} -0.458 eV	0.6447	2.551E-14	1.511E-13
I_p	Acceptor	E_{C} -0.545 eV	0.4335	4.478E-15	6.709E-15
H220	Donor	E_V +0.48 eV	0.5978	4.166E-15	1.965E-16
C_iO_i	Donor	E_V +0.36 eV	0.3780	3.230E-17	2.036E-14

 $g_{int}, \sigma_e, \sigma_h$: free parameters g_{int} : introduction rate

The paper can be found <u>Here</u>

	Mohammadtaghi Hajheidari
orksnop, 21-24 June 2022	University of Hamburg

Perugia 2019 Model

The model is optimized to describe the following experimental data:

• Charge Collection Efficiency (CCE) with ^{90}Sr source

The data are taken for PiN diodes and strip sensors:

- Irradiation with 26 MeV protons
- Irradiation to equivalent fluence up to $2.2 \times 10^{16} \text{ cm}^{-2}$

Тгар Туре	Energy (eV)	η (cm ⁻¹)	σ_e (cm ²)	σ_h (cm ²)
Donor	Ес-0.23	0.006	2.3×10 ⁻¹⁴	2.3×10 ⁻¹⁵
Acceptor	Ec-0.42	1.613	1.0×10 ⁻¹⁵	1.0×10 ⁻¹⁴
Acceptor	E _C -0.46	0.900	7.0×10 ⁻¹⁵	7.0×10 ⁻¹⁴

η : introduction rate

The paper can be found <u>Here</u>

RD50	workshop,	21-24	June 2022
-------------	-----------	-------	-----------

Perugia 2022 Model

The model is optimized to describe the following experimental data:

• IV and CV measurements

The data are taken for Low Gain Avalanche Diodes (LGADs):

• Irradiation to equivalent fluence up to $1.0 \times 10^{16} \text{ cm}^{-2}$

Defect number	Type	Energy level	$\sigma_e \ (\mathrm{cm}^2)$	$\sigma_h ~({\rm cm}^2)$	$\eta \ (\mathrm{cm}^{-1})$
1	Donor	$E_C - 0.23 \text{ eV}$	2.3e-14	2.3e-15	0.015
2	Acceptor	$E_C - 0.42 \text{ eV}$	1.0e-15	1.0e-14	10
3	Acceptor	$E_C - 0.46 \text{ eV}$	4.0e-14	4.0e-13	1.2

 η : introduction rate

The paper can be found <u>Here</u>

Charge collection profiles

The charge collection profiles are convolution of:

- the CCE profile
- the smearing caused by the limited spatial resolution of the track position
- the energy deposition profile of the electron beam as a function of depth in the diode

$$Q_{sim}(x) = A \cdot \left(CCE_{tot}(x) \cdot \frac{E_{dep}(x)}{E_{dep}(0)} \right) * Gauss(x, 0, \sigma_{res})$$
$$CCE_{tot}(x) = CCE_{e}(x) + CCE_{h}(x)$$

$$CCE_{e}(x) = \int_{-\frac{d}{2d}}^{x} E_{w}(y) \cdot \exp\left(\int_{x}^{y} \frac{dy'}{\lambda_{e}(y')}\right) dy$$
$$CCE_{h}(x) = \int_{x}^{+\frac{d}{2}} E_{w}(y) \cdot \exp\left(\int_{x}^{y} \frac{-dy'}{\lambda_{h}(y')}\right) dy$$
$$E_{w}(x) = \frac{1}{d}$$

- $\lambda_{e,h}$ (x): charge collection length of electrons and holes from the models
- d: thickness of the diode (150 μ m)
- A: scaling factor (76.8 for pad size of 25 mm² and 76.8 for pad size of 12.5 mm²)
- σ_{res} : beam resolution (10 µm)

RD50 workshop, 21-24 June 2022

 $\Phi_{\rm eq} = 2 \times 10^{15} \rm \ cm^{-2}$

$$\Phi_{eq} = 2 \times 10^{15} \text{ cm}^{-2}$$

RD50 workshop, 21-24 June 2022

 $\Phi_{eq} = 4 \times 10^{15} \text{ cm}^{-2}$

RD50 workshop, 21-24 June 2022

 $\Phi_{eq} = 8 \times 10^{15} \text{ cm}^{-2}$

 $\Phi_{eq} = 12 \times 10^{15} \text{ cm}^{-2}$

RD50 workshop, 21-24 June 2022

Mohammadtaghi Hajheidari University of Hamburg

16/22

Unfolding of charge collection profiles

Unfolding the measurements with respect to experimental effects:

$$Q_{sm}(x) = A \cdot \left(CCE_{spl}(x) \cdot \frac{E_{dep}(x)}{E_{dep}(0)}\right) * Gauss(x, 0, \sigma_{res})$$
$$CCE_{spl}(x) = spline(CCE_{x_i}), x_i = -65, -45, -25, -5, +15, +35, +55 \ \mu m$$

Minimizing the following function by taking CCE_{x_i} as free parameters:

$$D^{2} = \sum_{k} (Q_{\text{meas}}(x_{k}) - Q_{\text{sm}}(x_{k} + \Delta x_{\text{tr}}))^{2} + w_{\text{pen}} \sum_{i=2}^{6} \left(\frac{0.5(\text{CCE}_{x_{i+1}} + \text{CCE}_{x_{i-1}}) - \text{CCE}_{x_{i}}}{\Delta x} \right)^{2}$$

- A: scaling factor (76.8 for pad size of 25 mm² and 76.8 for pad size of 12.5 mm²)
- Δx : distance between two adjacent points: 20 μm
- Δx_{tr} : shift due the transformation from test-beam coordinate to the sensor coordinate system

Comparison with fit results

$$\Phi_{\rm eq} = 2 \times 10^{15} \rm cm^{-2}$$

$$\Phi_{ea} = 4 \times 10^{15} \text{cm}^{-2}$$

RD50 workshop, 21	-24 June 2022
-------------------	---------------

Comparison with fit results

$$\Phi_{
m eq}=8 imes10^{15}
m cm^{-2}$$

$$\Phi_{\rm eq} = 12 \times 10^{15} \rm cm^{-2}$$

RD50 workshop,	21-24 June	2022
----------------	------------	------

CCE as a function of depth

2

$$\Phi_{\rm eq} = 2 \times 10^{15} \rm cm^{-2}$$

$$\Phi_{\rm eq} = 4 \times 10^{15} \rm cm^{-1}$$

RD50 workshop,	21-24 June	2022
----------------	------------	------

CCE as a function of depth

 $\Phi_{eq} = 8 \times 10^{15} \mathrm{cm}^{-2}$

$$\Phi_{eq} = 12 \times 10^{15} \mathrm{cm}^{-2}$$

RD50 workshop	, 21-24 June 2022
----------------------	-------------------

Summary and Conclusions

- Charge collection profiles of irradiated and non-irradiated diodes were measured.
- The data have been corrected for experimental effects: finite beam resolution and transverse energy leakage.
- These results provide a precise determination of the position dependence of the charge collection in radiation-damaged diodes.
- The precise CCE data can be used to tune and test radiation damage models.
- The procedure of comparing data to radiation damage models has been demonstrated for 3 models: HPTM and two Perugia models.

Back up Charge distribution, non-irradiated diode

Measurement conditions:

- Room temperature
- $V_{\text{bias}} = 120 \text{ V}$
- $\theta: 0^{\circ}$
- $E_{beam} = 5.2 \text{ GeV}$
- Beam divergence: ±1 mrad

Observations:

• In the central region of the diode (i.e. 0.07 mm < X < 0.07 mm)

the collected charge is well above the noise level

• Data taking without zero suppression enables us measuring very low charges (relevant for irradiated diodes)

Back up Geometrical cuts

 $|y_{dut}| < 2.0 \text{ mm}$

Mon Jun 21 16:00:27 2021

Back up Extracted CCE for different thicknesses

 $5 \times 5 \text{ mm}^2$

 $2.5 \times 2.5 \text{ mm}^2$

RD50 workshop,	21-24 June 2022
----------------	-----------------

Mohammadtaghi Hajheidari University of Hamburg

25/22

Back up Extracted CCE for different thicknesses

 $5 \times 5 \text{ mm}^2$

Back up GEANT4 simulation result

RD50 workshop, 21-24 June 2022	
---------------------------------------	--

Mohammadtaghi Hajheidari University of Hamburg

27/22

Back up CCE as a function of bias voltage

Measurement conditions:

- Temperature: -20 C
- V_{bias} = 100 800 V DUTs:
- Proton irradiated at $\Phi_{eq} = 2, 4, 8, 12 \times 10^{15} \text{ cm}^{-2}$

CCE is calculated as:

$$CCE(V_{bias}) = \frac{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,irradaited} (V_{bias})}{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,non-irradaited}}$$

