
Graphene-Enabled Silicon-Integrated Radiation 
Detector for Low Penetrating Particles

N. Moffat, G. Rius, J. Villegas, G. Pellegrini

The 40th RD50 Workshop

23th June 2022



Introduction

• Motivation

• Detector Concept

• Simulation

• Measurements

• Prospects

RD50 Cern 2022 220/06/2022



Motivation

• We wanted to create a “junction” with a minimum dead layer.

• We are interested in detecting low-penetrating particles such as ions, 
electrons, protrons and “Soft X-rays”

• “Soft X-rays” can be used to study biological samples. 

• Specifcially we want to build a detector capable of studying X-rays 
with an energy in the so-called “water window”, between the Carbon 
and Oxygen edges (282 eV to 533 eV – Carbon and Oxygen being 
present in all biological samples).
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Detector Concept – Graphene-on-Insulator-on-Silicon (GIS) 
• Absorption layer (the 35um Si) and

bulk Si (the 300um Si)
• Graphene placed on top of thin

dielectric (3nm) in electrical contact
with metal.

• Reverse bias applied to metal with
ohmic contact to the highly-doped N
región.

• Detector depletes under the N-
electrode and under all regions of the
detector with Graphene on top.

• An inversión layer is present at the
interface of Oxide/Silicon

• Dead región is defined by the
thickness of the oxide. -> 3nm
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TCAD Simulation

• TCAD model developed using
Sentaurus TCAD.

• Graphene model doesn´t exist, instead
a modified model of polysilicon used.

• Image shows Electric field lines.
• Charge carrier shows upward

movement within the bulk silicon.
• Bending of the lines at the Surface ,

below the dielectric layer towards the
bias ring(Highly doped N region).
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Simulation

• Simulation shows that the
risetime of the signal is
dependant on the inital charge
injection position.

• This is due to the difference in
time required for the charge to
travel along the surface of the
detector.

• The risetime is proportional to
both the distance to the
collection electrode and the
resistance of the device below
the surface.
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TCT
• 2D TCT scan of entire detector area using a 

Blue laser (405nm).
• Charge collected over entire area is uniform.
• The region where there is a hole in the 

graphene shows zero charge collected.
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TCT
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TCT
Charge

Risetime

• Charge as function of injection position is
uniform.

• Collection time and risetime can be
different but all charge is collected.

• Measurements show that the risetime of
the signal is dependant on the inital charge
injection position.

• As expected from the simulation
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Photoresponsivity Setup

Output from 
MonochromatorDetector

• Monochromator system used to modify the
wavelength of light (200-800nm).

• The detector was biased to a fixed voltage and
a sweep of wavelength performed.

• The photocurrent was measured as a function
of wavelength.

• The responsivity was then calculated based on
measurements of a calibrated HPK diode.

• All measurements performed in the Detector
Development Lab at the University of Glasgow
with the help of Dr Dima Maneuski.
(Dima.Maneuski@glasgow.ac.uk)
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Photoresponsivity • Photo response of fabricated detectors 
show a variety of responses. 

• To note the max responsivity of a 
silicon detector at 200nm is 0.17A/W

• The HPK reference diode shows good 
sensitivity at the full wavelength range.

• The devices with graphene show a 
superior response at wavelengths 
below 230nm. 

• It is thought that the graphene must 
undergo gating (which is voltage 
dependant) in order to collect light at 
these wavelengths. 
https://www.sciencedirect.com/scienc
e/article/abs/pii/S1748013210001623?
via%3Dihub

• Main feature is that the devices are 
active at the full wavelength range.

• Penetration depth of light of 200nm is 
approx 4nm.RD50 Cern 2022 1120/06/2022
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Prospects – AC-LGAD coupled with GIS 
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Conclusions

• A device with a minimum dead area has been presented, which has 
been made utilizing the, almost, transparent nature of graphene.

• The device has a uniform charge collection across the entire area but 
the shape of the signal varies depending on the point of charge 
interaction.

• An LGAD device with this window could be produced for imaging of 
soft X-rays and DUV light.

• Next stage is in production. The first LGAD device with this 
transparent window will be produced at CNM this year using the AC-
LGAD technology.
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Thanks for your 

attention!
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Backup
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Simulation Model
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Si Detectors

W2
Active bulk 35 µm
JTE 
P shallow junction
S1 and S3 with metal on the Surface
S2 and S4 without metal

W3
Active bulk 35 µm
JTE 
NO P shallow junction – Graphene 
Deposited
S1 and S3 with metal on the Surface
S2 and S4 without metal

Graphene Layer
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Measurements of EQE- ShallowImplant
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Measurements of EQE– NoImplant with Graphene
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Measurements of EQE– Comparison
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Setup

Output from 
Monochromator

Detector
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Absorption Depth in Silicon
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Absorption depth in silicon
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