NRC·CNRC

GaN / AlGaN high electron mobility transistor characteristics after 10¹⁶ n_{eq} neutron irradiation

Jean-Paul Noël¹, Craig Storey¹, Ryan Griffin¹, Alex Walker¹, Thomas Koffas², E. Giulio Villani³, Gary Zhang³, Philip Allport⁴, Laura Gonella⁴, Ioannis Kopsalis⁴, Igor Mandic⁵, Philippe Godignon⁶, Joan Marc Rafi⁶

40th RD50 Workshop, 21-24 June 2022

1) NRC Canada 2) Carleton U. 3) STFC-RAL 4) U. Birmingham 5) Jøzef Stephan Inst. 6) CNM

ational Research Conseil national de ouncil Canada recherches Canada

Global deployment of GaN technology is significant... and still accelerating

- Communications (cell phone chips, 5G base stations, LEO satellites, CATV, PtP radio, VSAT, power cubes & wireless chargers)
- Automotive (LiDAR for autonomous vehicles; power switch/converter for hybrids and EVs, ultra-high fidelity infotainment systems, power distribution)
- > Aerospace (power amplifiers, radiation-hardened RF electronics)
- Military and defense (radar, electronic warfare EW, and military communications)
- Oil and gas, geothermal power generation

Fig 1. Main AlGaN/GaN HEMT applications are in: (a) Communications, (b) Automotive, (c) Aerospace, (d) Military/defense, (e) Oil and gas/geothermal.

Two GaN HEMT epitaxial structures: AIGaN barrier on GaN, and InAIN barrier on GaN

A high-mobility 2D-electron gas (2DEG) forms at the interface between GaN and AlGaN or InAlN

• polarization effects provide free electrons

 \Box no intentional dopant atoms \rightarrow no ionized impurity scattering

- GaN is an ordered alloy, but $AI_xGa_{1-x}N$ is a random alloy
 - □ 1nm AIN "spacer" between GaN and AlGaN (not shown) provides shift of 2DEG centroid away from AlGaN
 - □ 2DEG intensity in AlGaN ~ 10% of peak → reduces alloy scattering

Net result for GaN/AlGaN 2DEG properties at RT: mobility ~ 2000 cm²/V-s \rightarrow potential for high speed devices density ~ 10¹³/cm² \rightarrow potential for high current devices

"Engine" for high electron mobility transistors \rightarrow 2DEG

Figure 2. Spontaneous and piezoelectric polarization vectors in a metal-face wurtzite AlGaN/GaN heterostructure.

Depletion-mode (normally ON) HEMT cross-section

- Drain bias positive relative to source (ground)
- Vds = +10V for all presented results

Gate bias

controls electron flow from source to drain

- Vgs variable from -10V (OFF) to +2V (ON)
- 2DEG depletion under gate occurs at Vgs = -4V → drain current cut-off
- unipolar device

Nucleation AIN spacer AIGaN GaN cap

HEMT cross-section (not to scale)

Overall chip layout

Pre-neutron irradiation transfer curve

All HEMTs (30) had similar curves prior to irradiation; no correlations with Lg

6

Pre-neutron irradiation transfer curve and current in gate circuit: reveals issues with epi growth or processing

Below Vth, the gate circuit current in a good quality HEMT precisely tracks drain circuit current

Drain current >> gate current indicates epi quality problem

Gate current >> drain current indicates gate process issue

gate voltage, Vgs (V)

Chips as-received after neutron irradiation at Jozef-Stephan Institute

Chips were mounted on clear double-sided tape in chip tray to facilitate shipping and exposure to beam. Dark, wrinkled tape with some "tilted" chips resulted.

Pre- and post-neutron irradiation transfer curves and gate currents

Effects of $10^{16} n_{eq}$ neutrons:

Drain leakage current reduced (i.e. improved)

 corresponding differences b/w Jds and Jgs are consistent

Vth shifted + 0.4V

acceptable within IC design limits

Output current decreased 19%

 lower than expected for standard HEMTs, i.e. no fab process improvements

Summary Plots: ON-state current, OFF-state current vs Lg

10

2" GaN on GaN Schottky work

PLAN

Specify and procure 4 wafers from Kyma (at \$5k US each) 2 wafers each to go to CNM, NRC for Schottky processing Mask layouts were shared, toward a common one

RESULTS so far: a "rough" start

CNM processed one wafer \rightarrow poor Schottky diodes (more like resistors)

determined that the epi surface was very rough

Wafer pucks as-received from Kyma were not yet opened at NRC

- fab tool issues caused major delays
- wafer inspection was done promptly upon CNM's news
- disappointing results for inspection...

2" GaN on GaN work: incoming wafer inspection

Macroscopic defects visible to the unaided eye upon 1st inspection

Large circular blemish on backside

2" GaN on GaN work: circular back side feature

Microscope illumination from the objective lens reveals strong light scattering in the circular backside blemish

2" GaN on GaN work: profilometer scans

- Clear peripheral area and centre area with strong light scattering gave similar results by profilometer:
- 5mm scan shows peak-valley roughness of ~ 0.8um
- Kyma admitted hillock formation occurred during epi and
- "wafers should have been polished post-epi"
- polishing now done on 2 wafers:
 3um of 10um epi removed

2" GaN on GaN work: roughness after polishing

- Roughness after 35 hours of chemical-mechanical polishing down to ~ 40nm – 50nm.
- better than 800nm RMS as-grown value, but nowhere near their own spec of 2nm RMS!
- GaN HEMT epi on SiC from all three well-established vendors to NRC is routinely < 2nm RMS surface roughness

Outlook and next steps

Perform RF measurements on neutron-irradiated HEMTs to compare with post fab final test data from 2017, if coplanar waveguide probes can be made to work on existing chips adhered to damaged/tilted tape

• Lg= 500nm pre-irradiation values were $f_t = 18$ GHz, $f_{max} = 36$ GHz

Start fab runs for Schottky diodes on two polished Kyma wafers

- one wafer for CNM fab, one for NRC fab
- send third wafer (currently at CNM) to Kyma for polishing, as a spare

Start fab run for GaN HEMTs (possibly ICs, e.g. TIA for hybridizing with Si LGADs), this time incorporating fab process modifications with demonstrated robustness during 500°C aging

• expect better radiation-hardness than measured in the present work: **aim for 10**¹⁷ **n**_{eq} **neutrons**

Longer term...monolithically-integrated GaN HEMT ICs and particle detectors

NRC CNRC

THANK YOU

National Research Conseil national de council Canada recherches Canada