

Radiation damage investigation of epitaxial p-type silicon using Schottky and pn-junction diodes

E. GIULIO VILLANI, <u>CHRISTOPH KLEIN</u>, THOMAS KOFFAS, ROBERT VANDUSEN, GARRY TARR, ANGELA MCCORMICK, PHILIP PATRICK ALLPORT, LAURA GONELLA, IOANNIS KOPSALIS, IGOR MANDIC, FERGUS WILSON, YEBO CHEN, MATTHEW KURTH, PEILIAN LIU

 40^{TH} RD50 Workshop, 21-24 June 2022

Project description and goals

• What:

- fabricate Schottky and n⁺p diodes on p-type epitaxial (50μm thick) silicon wafers
- doping concentrations as they are normally found in CMOS MAPS devices
- <u>Why:</u>
 - investigate and gain a deeper understanding of radiation bulk damage in CMOS sensors
 - develop reliable damage models that can be implemented in TCAD device simulators

• <u>How:</u>

- purchase of 6-inch wafers at five B-doped epitaxial levels (10¹³, 10¹⁴, 10¹⁵, 10¹⁶ and 10¹⁷ cm⁻³)
 25x each, total 125 wafers
- fabrication process at ITAC (RAL) and Carleton University Microfabrication Facility (CUMFF)
- measurements will be carried out at RAL, Carleton, Birmingham, JSI, IHEP

Design and layout of devices

5 type of devices proposed:

- #1: 2 mm Ø cathode with 0.4 mm Ø central hole, 10 x 10 mm² area
- #2: 1 mm Ø cathode, 0.2 mm Ø central hole, 5 x 5 mm²
- #3: 0.5 mm Ø cathode, no central hole, 2.5 x 2.5 mm²
- #4: 0.1 mm Ø cathode, no central hole, 0.5 x 0.5 mm²
- 'cell' with the previous 3 flavors (2,3,4) grouped together, to exploit wafer uniformity on small area
- **#5**: 6 TLM points for contact and epi resistance
- 2 masks only (metal and oxide)
- detailed description during the <u>35th RD50 workshop</u>
- different flavours of cathode/GR and option for p-stop in pn-junction diodes (see <u>last RD50 workshop</u>)

Fabrication details & comparison

RAL-ITAC

- Schottky fabrication process only, optimised on test wafers
- oxide deposition @150°C
- Al sputtering immediately after etching (no thin SiO2 layer)
- Al lift off in Acetone ultrasonic tank

CUMFF

- pn-junction and Schottky processes, optimised on test wafers
- 6" substrate wafers laser cut into 4" or 6" wafer pieces
- high temperature thermal oxidation
- Al front metal thermal deposition, back Al via e-beam evaporation
- front metal patterning + etching

full details of fabrication processes in <u>E.G. Villani's</u> talk from the 36th RD50 Workshop

IV vs. T measurements

- diode samples with 1mm cathode
- p-stop sample shows more than 1 polarity switch at some temperatures
- performing I-DLTS might be interesting

CV measurements

- CV measurements in cryostat setup prior to DLTS
- useful to determine depletion width
 ⇒ indicates bulk width that selected DLTS parameters are sensitive to
 - naïve assumption for lateral depletion = cathode area (1mm) shown in inset graphs
- 'jump' in data of pn-diode with p-stop also observed in other silicon devices with p-stop structures (e.g. ITk testchips)

DLTS: basics

- 1. DUT is under constant reverse bias
- 2. filling pulse with specific voltage $V_{\rm P}$ and duration is applied
 - o pulse settings need to be adjusted to trap states of interest
 - $\circ~V_{P}$ as reduced reverse bias $\rightarrow~majority~carrier$ traps (holes)
 - V_P slight forward bias → minority carrier traps (electrons), if capture rate much larger than competing majority traps
- 3. bias back to prior level, measure capacitance transients
- usually average O(100) transients per temperature point to reduce noise
- plot $\Delta C = C(t_2) C(t_1)$ vs. temperature for fixed times
- analyse peaks/valleys in spectrum by varying Rate Window [t₁; t₂]

DLTS: Rate Window plots

- multiple DLTS measurements performed for diode sample with/without p-stop
 - different bias voltage + filling pulse settings used

pn p-stop:

- 2 peaks (≙ hole traps) with one clearly a convolution of 2 trap states
 - analysis of more narrow peak at ~165K also shows 2 trap states
 - example of RW analysis shown
- traps did not change much for different bias voltages used

DLTS: Rate Window plots

- multiple DLTS measurements performed for diode sample with/without p-stop
 - different bias voltage + filling pulse settings used

pn-diode:

- Rate Window plots with same Rate Window parameters shown for different scans
- 2 peaks (≙ hole traps) at low T and onset of another peak at room temperature
 - low-T peak shifts for different bias voltage
 - ⇒ field dependence of trap energy

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels
- more individual Arrhenius plots in backup slides

T _{median} [K]	E _{trap} [eV]	σ [cm²]
72.6	0.330 ± 0.007	4.1x10 ⁻¹ ± 3.1X
157.2	0.260 ± 0.011	1.9x10 ⁻¹⁶ ± 2.3X
169.2	0.298 ± 0.002	5.8x10 ⁻¹⁶ ± 1.1X

- good agreement of common 165K peak \Rightarrow peak contains 2 traps each
- field dependence of low-T peak trap parameters

T _{median} [K]	E _{trap} [eV]	σ[cm²]
72.6 (-1V)	0.330 ± 0.007	4.1x10 ⁻¹ ± 3.1X
87.4 (-2V)	0.407 ± 0.005	9.4x10 ⁻¹ ± 2.0X
118.6 (-4V)	0.442 ± 0.005	9.9x10 ⁻⁶ ± 1.6X
129.2 (-5V)	0.545 ± 0.007	1x10 ⁻³ ± 1.9X

 T^2 / e [K²s]

Thermal Admittance Spectroscopy (TAS)

TAS:

- measure capacitance C and conductance G as function of frequency and temperature
- defect contribution to C/G depending on test signal frequency and temperature
- steps in C or peak in G temperature dependence indicate thresholds for new traps contributing
- steady-state measurement
- applicable for low-doped or highresistivity materials, complements DLTS

- DLTS and TAS measurements were successfully used to characterise traps in unirradiated diode samples
 - multiple trap states found
 - their trap levels + cross-section determined from Arrhenius plots
 - peak with 2 hole trap states common across all DLTS scans and samples
 - energy shift observed in 'standard' pn-diode, indication of field dependence of trap energy

Outlook:

- Further studies of observed traps for input in TCAD simulations
 - DDLTS for field dependent traps
 - filling pulse width dependence for capture kinetics
- > DLTS measurements of Schottky diodes and irradiated samples

Backup

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels

T _{median} [K]	E _{trap} [eV]	σ [cm²]	
87.4	0.407 ± 0.005	9.4x10 ⁻¹ ± 2.0X	
159.4	0.255 ± 0.008	1.6x10 ⁻¹⁶ ± 1.8X	
171.2	0.303 ± 0.003	8.4x10 ⁻¹⁶ ± 1.2X	

no p-stop

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels

T _{median} [K]	E _{trap} [eV]	σ[cm²]
118.6	0.442 ± 0.005	9.9x10 ⁻⁶ ± 1.6X
159.4	0.241 ± 0.009	4.7x10 ⁻¹⁷ ± 1.9X
172.4	0.296 ± 0.002	4.9x10 ⁻¹⁶ ± 1.2X

2022-Jun-21

no p-stop

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels
- low-T peak too close to 165K peak for good 2-Gaussian deconvolution

T _{median} [K]	E _{trap} [eV]	σ[cm²]	1
129.2	0.545 ± 0.007	1x10 ⁻³ ± 1.9X	
164.9	0.287 ± 0.003	3.3x10 ⁻¹⁶ ± 1.2X	

T² / e [K²s]

no p-stop

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels
- filling pulse not yet optimised, fitting results not very precise

T _{median} [K]	E _{trap} [eV]	σ[cm ²]
160.0	0.268 ± 0.014	3.0x10 ⁻¹⁶ ± 2.7X
175.1	0.309 ± 0.005	1.0x10 ⁻¹⁵ ± 1.4X
242.7	~0.999	
276.2	0.59 ± 0.04	2.4x10 ⁻¹⁴ ± 5.4X

pn diode, with p-stop

- plateau in trap concentration indicates that trap state was saturated with filling pulse
 - positive slope indicates insufficient saturation, negative slope competing trap levels
- filling pulse not yet optimised, fitting results not very precise
- forward bias filling pulse yields electron trap ('negative' trap energy)

T _{median} [K]	E _{trap} [eV]	σ[cm ²]
162.7	0.217 ± 0.007	7.2x10 ⁻¹⁸ ± 1.3X
172.6	0.287 ± 0.004	2.2x10 ⁻¹⁶ ± 1.7X
282.9	-0.832 ± 0.037	1.8x10 ⁻¹⁰ ± 4.5X

pn diode, with p-stop

DLTS spectrum:

- 2 maxima
- analysis with Gaussian deconvolution \Rightarrow peaks contain 2 traps each 2.6E+3

trap params from Arrhenius plot:

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170.6	0.293	7.6E-16	9.7E-3
182.8	0.310	7.0E-16	2.1E-2
241.8	0.430	1.0E-15	7.6E-4
258.5	0.536	3.2E-14	3.5E-3

T2/e

300

DLTS: Schottky diode @Bucharest 2020

DLTS spectrum:

- 3 maxima from hole traps
- 1 minimum, most likely from surface/interface states

trap parameters (Vbias=+5V; Vf=+1V):

Defect	Temp (K)	Ea (eV)	Sigma (cm2)	Defect concentration (cm-3)	
H47	47	0.069	6.87E-17	2.49E10	-(
H158	158	0.294	4.35E-16	9.32E11	
Z197	197	0.439	1.85E-14	2.90E11	
H285	285	0.611	3.76E-15	1.32E11	

DLTS: Schottky diode @Semetrol 2020

DLTS spectrum:

- peak with 2 majority carrier traps
- 'minority' carrier trap
 ⇒ vanishes for reduced + shorter
 filling pulse
 ⇒ surface/interface states likely
- large majority carrier trap for larger filling pulses at room temperature

Midpoint temp (K)	E _t (eV)	Sigma (cm ²)	N _t /N _s
170	0.312	5.5E-15	7.8E-3
180	0.294	3.3E-16	2.2E-2

TAS @Semetrol 2020

TAS analysis:

- higher trap energy in Schottky for similar peak
- second Schottky trap near mid-gap
- energy shift at different test voltages
 > field dependence of trap energy
 - > might explain difference between Schottky and pn-junction (higher E-fields in pn diode)

Sample	V _{bias}	E _t (eV)	σ (cm²)
PN	-1V	0.384	1.1E-16
Schottky	-1V	0.498	1.6E-14
Schottky	-2V	0.467	3.0E-15
Schottky	-1V	0.664	3.5E-13
Schottky	-2V	0.614	3.7E-14

