

EP-R&D Silicon Working Group 1.1

Hybrid Detectors

Small pitch 3D Timing (& planar ⁽²⁾)

Evangelos – Leonidas Gkougkousis

CERN EP-R&D

CERN – June 23nd, 2022

Introduction, EP-R&D W.P. 1.1 – Hybrid Sensors

Planar Sensors (J. Haimberger, V. Gkougkousis)

- ✓ Radiation damage and trapping model validation though TCAD
- ✓ Timing and efficiency at < 1e17 n_{eq} /cm² using fast neutrons and ps protons (thicknesses 50, 100, 200, 300 µm)

LGADs (V. Gkougkousis)

- ✓ Radiation damage mechanisms and modeling on different dopant types (<u>TIPP2021</u>, <u>ArXiV Preprint</u>, <u>PicoSecond Workshop 2021</u>)
- ✓ Indium-Lithium gain layer radiation hardness investigations (<u>Trento2021</u>)
- ✓ Process simulations and SiMS Carbon/Boron (LINK)

Silicon Electron Multiplier (M. Halvorsen, LINK, ArXiV Preprint, IEEE)

- ✓ Structure optimization and electrostatic simulations.
- ✓ Timing and transient Simulations
- ✓ Process iterations (Metal Assisted Etching)

Small Pitch 3Ds for tacking and timing (V. Gkougkousis, LINK)

- $\checkmark~\beta$ particles timing studies on irradiated and unirradiated devices
- ✓ Test beam with SPS pions (Tracking + Timing)
- ✓ Proton and neutron irradiations > 1e17 n_{eq}/cm^2
- \checkmark New small pitch production optimized for gain at electrode region

Victor Coco Paula Cliins

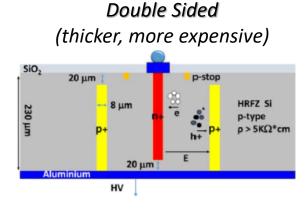
Experiment specific resources (LHCb, Exp @ SPS, other R&D pr 2020 2021 2023 20222024Post-irradiation Characterisation Irrad Thin planar Characterisation 3D LGAD: C co-implant charact. Indium, Lithium co-implantation iLGAD SiEM (simu) SiEM (prod) Simulation (TCAD + signal simulation): radiation damage modeling, input for sensor reoptimisation and IC block design, etc.. Optimisation of system level timing **TPX4** telescope construction M D +sensor upgrade phasel phase2 Fast timing setup integrated to EUDET telescope Submit 28nm analog FE design Test MPW Participation to a 28nm prototype ASIC for R&D Vagelis Gkoukousis MPX4 Fellow 1 Fellow 2 Mohammad Hajheidari Fellow 3 Marius Halvorsen PhD₁

E. L. Gkougkousis

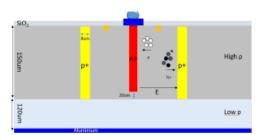
Talks @ Trento 2022

•3D Sensors

Timing at Extreme Fluences


3D Sensors: Decoupling of charge generation and drift volume (*Standard columns, TimeSpot, Hex geometries* ect.)

Pros

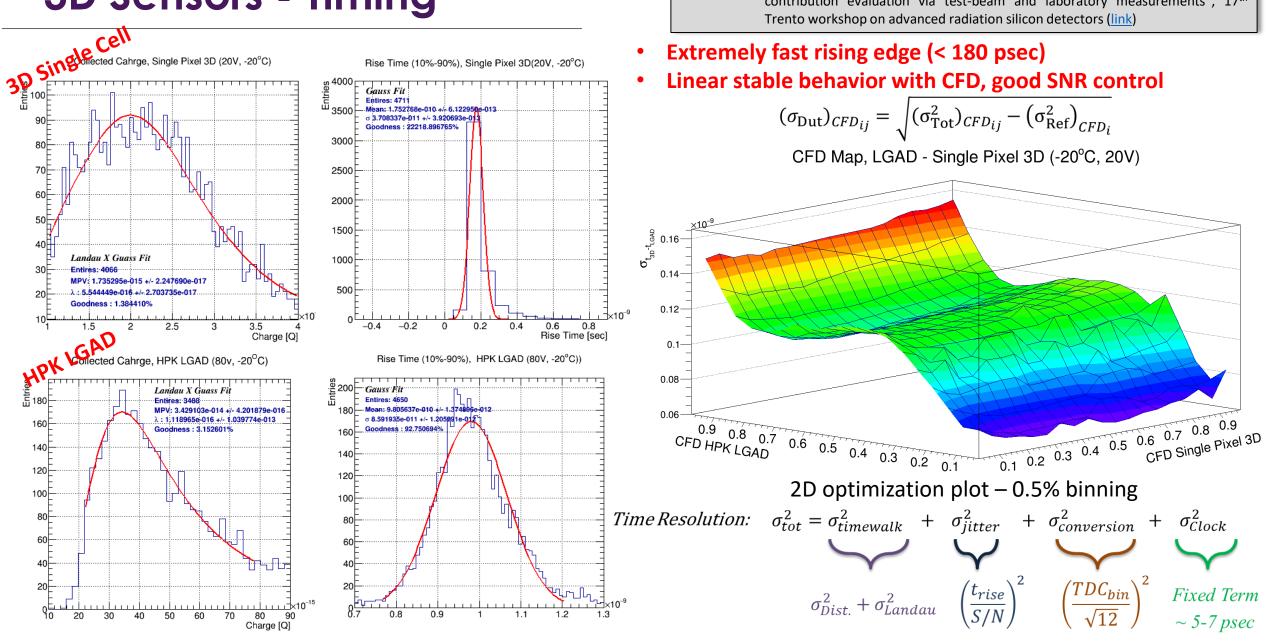

- High radiation tolerance up to several times 10¹⁶ n_{eq}/cm²
- Short drift distances with fast rise times
- Reduced Landau fluctuation, practically non-existent for perpendicular tracks

Cons

- Non-uniform field geometry
- High cost
- Increased cell capacitance

Single Sided (thinner, simpler process)

Pixel Size vs Field Uniformity


ATLAS IBL TYPE

- ✓ Double sided n-on-p process
- ✓ Pixel Size 55 × 55 μ m²
- ✓ Active thickness 230 µm
- ✓ High Resistivity (> 2 k Ω m × cm) Fz silicon

ATLES Pre-Production type

- ✓ Single sided n-on-p process
- ✓ Pixel Size $25 \times 100 \ \mu m^2$
- ✓ Active thickness 150 µm
- ✓ High Resistivity (> 2 k Ω m × cm) Fz silicon
- ✓ Single sided n-on-p process
- ✓ Pixel Size $50 \times 50 \ \mu m^2$
- ✓ Active thickness 150 µm
- ✓ High Resistivity (> 2 k Ω m × cm) Fz silicon

•3D Sensors - Timing

Presentation: V. Gkougkousis, "Single cell 3D timing: Time resolution assessment and Landau

contribution evaluation via test-beam and laboratory measurements", 17th

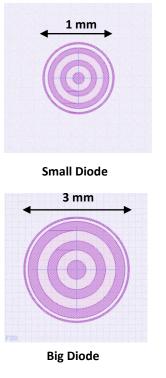
E. L. Gkougkousis

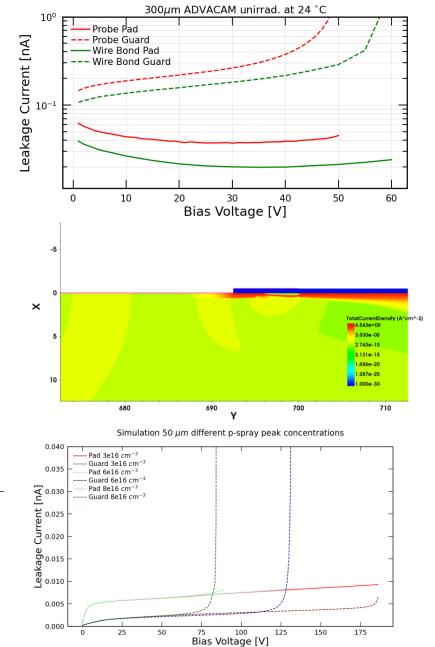
Planar Sensors

Sensors: CERN EP-R&D n-on-p planar sensor run with ADVACAM at 50, 100, 200 and 300 μm active thickness (TimePix4 bonded sensors also from this run, see Kazu's talk <u>here</u>)

Test Structures

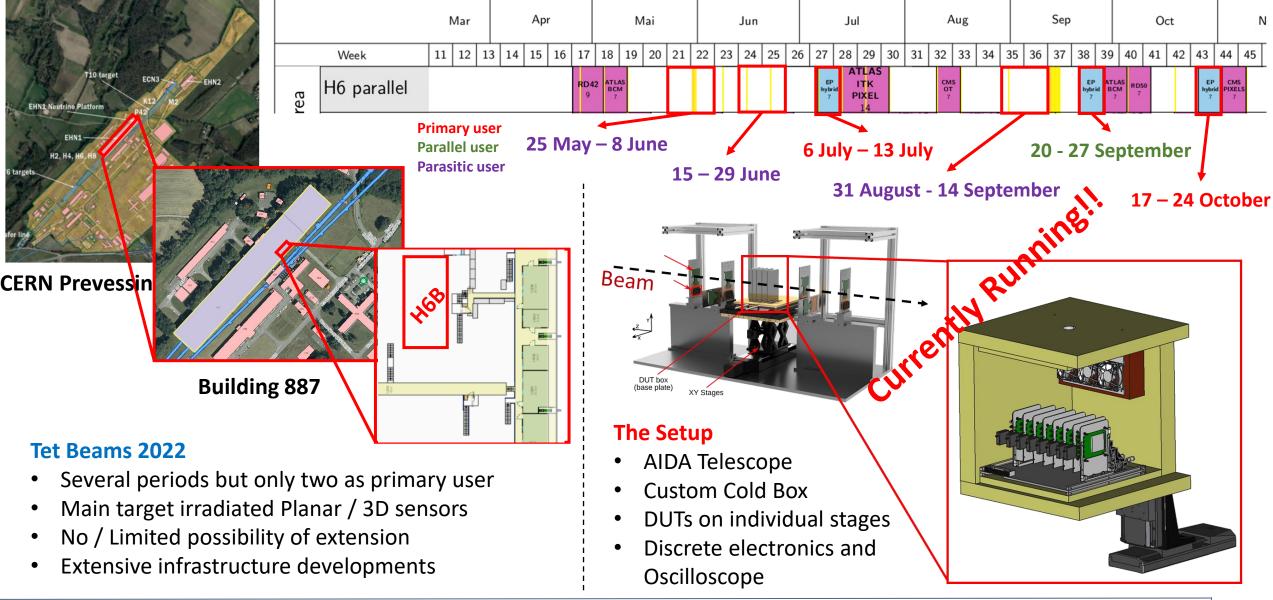
- Small diodes (3.14 mm2 active area) Circular diodes for timing studies due to lower capacitance
- Big diodes (28.27 mm2 active area) Circular diodes for radiation damage studies
- 5x5 Pixel matrix (0.003 mm2 active area) for charge sharing and interpixel efficiency – timing studies


Issues

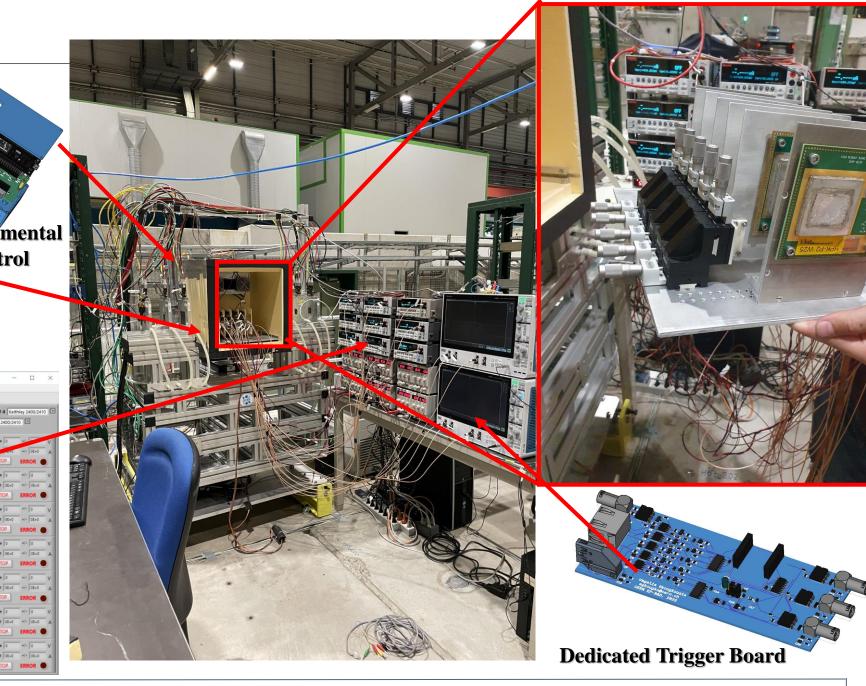

- Early breakdown due to high p-spray concentration leading to impact ionisation at the interface between p-spray and electrode implant
- Breakdown first visible in guard ring due to bigger interface region compared to pad

Irradíatíons

(both 3D and planar)


Neutron @ JSI (Ljubljana) **Proton** @ PS

Test Beam Planning

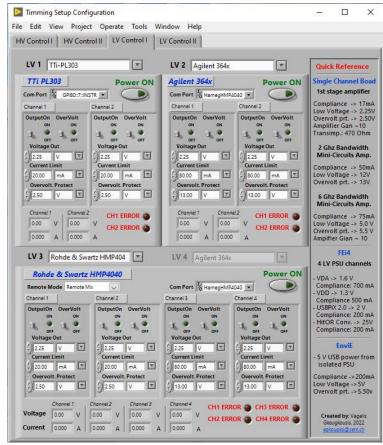


0

Environmental Control

XPS Cold Box

D Timming Setup Configuration		-	D X				
File Edit Operate Tools Window Help							
HV Control I HV Control II LV Control I LV Co	ontrol II						
LV 1 Rohde & Swartz HMP404	V 2 Agilent 354x		ick Reference				
Rohde & Swartz HMP4040			le Channel Boad				
Remote Mode Remote Mix 👳 Co	Port HamepHVP4040		-Circuits Amp.				
		ng Setup Configuration				-	
ON ON ON ON	ON ON PRE LON	Operate Tools W					
L or L or L or L	011 011	HV Control II	LV Control I LV C	ontrol II			
	oltage Out	hley 2400/2410 🔳 H	V 2 Keithley 2400/24	0 T HV 3	Keithley 2400/2410	HV 4 Keit	hley 2400/24
Approximate particular page (Approximate provide page (Approximate page)	urrent Limit	HV 5 Keithley 2400/2	410 HV 6	eithley 2400/24	10 T HV7	Keithley 2400/24	10 🗉
	10.00 mA T		Created by: Vagels	Gkougkousis, 2021	szinesin@carach		
()250 V V ()250 V ()	13.00 V			Repetitions	E HV	Voltage 0	4/2
Channel 1 , Channel 2 , Channel 3 , Ch	Innel4 CH1 ER Power CF		9* ()-100.00 V	Compliance	1 15.00 UA	Current Contraction	*/- OE+0
Voltage 000 V 000 V 000 V	00 V CH2 ER	or on Voltage S	tep (-5.00 V	Set Delay	100	J STOP	ERROR
Current 0.000 A 0.000 A 0.000	and the second second	Address Start Volt	er (loss ly l	Repetitions	HV2	2 Voltage 0	*/- 0
LV 3 Agilent 363x	V 4 Agilent 364 Power O	y24108		Compliance	-	000050 0.00	*/+ OE+0
					() 1.00 I E		ERROR
	yuent John						
	hannel 1	Address Start Volt			Summer Street		+/- 0
OutputOn OutputOn O	NutputOn OverVolt PowerOf				· · · · · · · · · · · · · · · · · · ·		*/~ OE+0
	1 1 1 💭	OFF a ON Voltage S	tep ()-5.00 V [Set Delay	g 1.00 s	STOP	ERROR
Voltage Out Voltage Out	Voltage Out GPIB	Address Start Volt	+9* ()0.00 V [Repetitions	E HV	4 Voltage 0	*/- 0
Current Limit	2.25 V T Carrie		9* ()-100.00 V	Compliance	() 15.00 UA	Current OE+0	*/- OE+0
20.00 mA E 20.00 mA E	80.00 mA E		tep ()-5.00 V	· Set Delay	() 1.00 1 E	E STOP	
	Overvalt. Protect	Address Start Volt	*9* ()0.00 V E	Repetitions	HVS	Voltage 0	*/- 0
	Kiette	V2410A			Property and and and		*/- OE+0
Channel 7 Channel 2 CHI ERROR	Channel 1 Chan Power Of	NY MODE				a contraction of the second	
CH2 ERROR		out The out		Set Delay) 1.00 1 E		ERROR
J	GPIB	Address Start Volt	*9* () 0.00 V E	T Repetitions	gr HV	5 Voltage 0	*/- 0
	Power O		and the second se		Contraction of the	Contraction of the second	*/- OE+0
Slow Contr	പി	or an Voltage S	tep ()-5.00 V [Set Delay	()1.00 s	E STOP	ERROR
	or is	Address Start Volt		Repetitions	() = HV	Voltage 0	+/- 0
	Power O	V24108 End Volta	9* ()-100.00 V	Compliance	() 15.00 WA	Current OE+0	*/- OE+0
DAO			tep ()-5.00 V	Set Delay	() 1.00 Is E	E STOP	ERROR

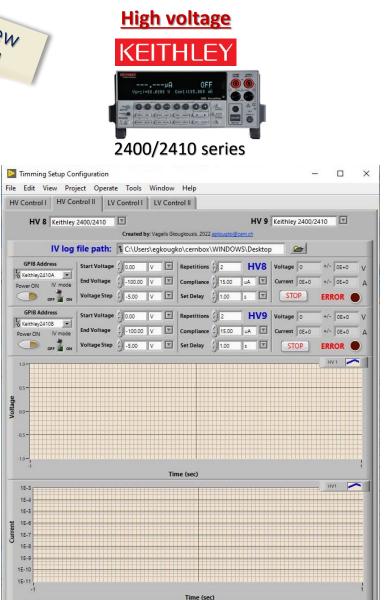

Test Beam Configuration

Pixelated plane LGAD1 CH2A CH3A CH4A LGAD2 CH2B CH3B CH4B FEi4

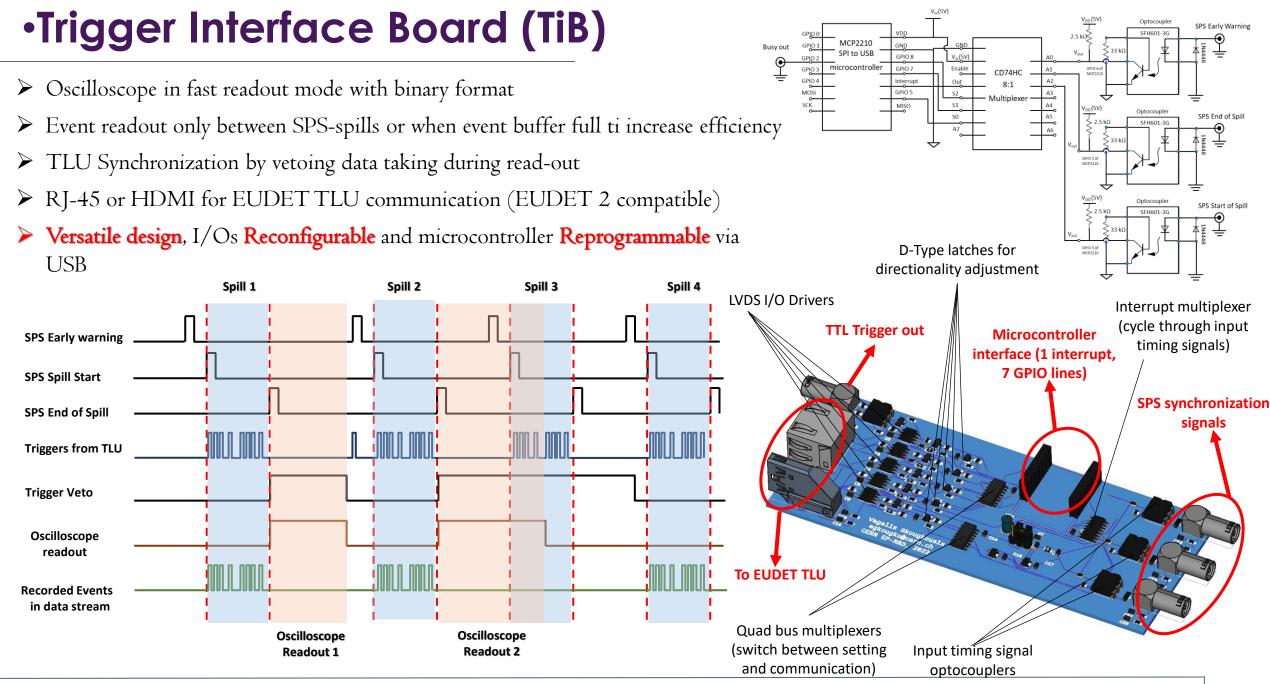
June Test Beam Planning

	_	Sample type	Sample no.	Fluence (n _{eq} /cm²)	
=	LGAD Planes	Reference LGADs	2	Unirradiated	
		Single Cell 3D, n-in-p,	1	Unirradiated	
		2-sided, High Res. 285 μm thick	1	1×10^{15}	
BEAN	1	55 μm pitch 1 mm² planar diodes	1	8 × 10 ¹⁵	
			$1x50\mu m$ thick	Unirradiated	
		I mm planar diodes	$1x100\mu m$ thick	Unirradiated	
3D singl	e cell sensors		 9 x Kei 6 x TTi 8 Seco 	cilloscopes thley 2410 PL303 nd stage amplifiers	
			· 100 ·	o-positioning stage ity – Temperature	

•HV & LV Control/monitoring



Multi-model Support with Polymorphic UI



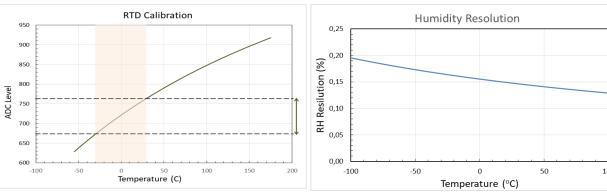
Labview Timming Setup Configuration File Edit View Project Operate Tools Window Help based HV Control I HV Control II LV Control I LV Control II HV 1 Keithley 2400/2410 🗹 HV 2 Keithley 2400/2410 🗹 HV 3 Keithley 2400/2410 🖾 HV 4 Keithley 2400 HV 5 Keithley 2400/2410 T HV 6 Keithley 2400/2410 T HV 7 Keithley 2400/2410 T Created by: Vagelis Gkougkousis, 2022 egkougko@cem.c. **GPIB Address** Start Voltage / 0.00 V T Repetitions / 2 HV1 Voltage 0 +/- 0E+0 V Keithley2410A End Voltage / -100.00 V T Compliance / 15.00 UA T Current 0E+0 +/- 0E+0 Power ON IV Mode Voltage Step () -5.00 V V Set Delay () 1.00 s V STOP ERROR GPIR Addres Start Voltage () 0.00 V T Repetitions () 2 HV2 Voltage 0 +/- 0E+0 Keithley24108 End Voltage / -100.00 V T Compliance / 15.00 UA T Current 0E+0 +/- 0E+0 Power ON IV mode 2 OFF ON Voltage Step ()-5.00 V T Set Delay () 1.00 s T STOP ERROR **GPIB Address** Start Voltage () 0.00 V T Repetitions () 2 HV3 Voltage 0 +/- OE+0 Keithley2410A End Voltage ()-100.00 V T Compliance ()15.00 UA T Current 0E+0 +/- OE+0 A Power ON IV mode Voltage Step () -5.00 V T Set Delay () 1.00 s T STOP ERROR **GPIB Address** Start Voltage () 0.00 V T Repetitions () 2 HV4 Voltage 0 +/- 0E+0 Keithley24108 End Voltage (+) -100.00 V T Compliance (+) 15.00 uA T Current 0E+0 +/- 0E+0 / Power ON IV mode 4 OFF ON Voltage Step 4-5.00 V T Set Delay 4 1.00 s T STOP ERROR **GPIB Address** Start Voltage 1 0.00 V T Repetitions 1 2 HV5 Voltage 0 +/- 0E+0 V Keithley2410A End Voltage (- - 100.00 V T Compliance (15.00 UA T Current 0E+0 +/- 0E+0 A Power ON IV mode Voltage Step () -5.00 V T Set Delay () 1.00 s T STOP ERROR **GPIB** Addres Start Voltage () 0.00 V T Repetitions () 2 HV6 Voltage 0 +/- 0E+0 V Keithley2410B Power ON IV mode 6 End Voltage 2 .100.00 V T Compliance 2 15.00 uA T Current 0E+0 +/- 0E+0 OFF ON Voltage Step ()-5.00 V T Set Delay () 1.00 5 T STOP ERROR **GPIB** Addres Start Voltage (0.00 V Repetitions 4) 2 HV7 Voltage 0 +/- 0E+0 V Keithley2410B End Voltage / -100.00 V T Compliance / 15.00 uA T Current 0E+0 +/- 0E+0 Power ON IV mode OF ON Voltage Step 0.5.00 V T Set Delay 0.00 s STOP ERROR 9x HV channels 16x LV channels Constant monitoring & logging Live protection

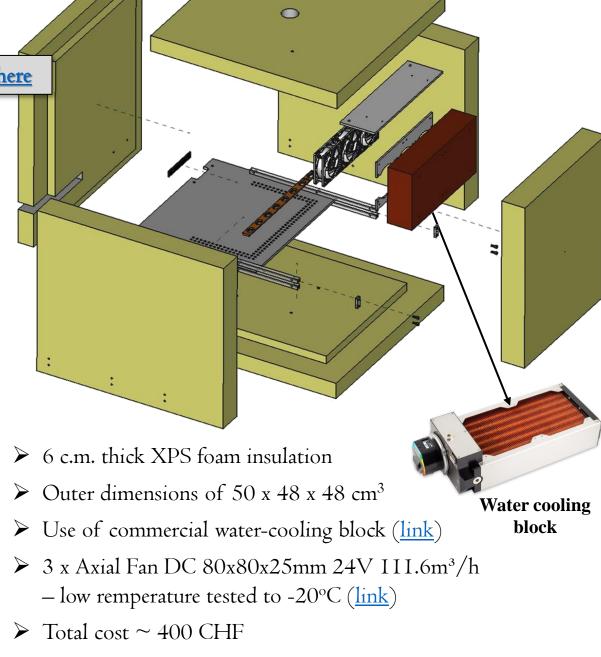
Precompiled executable available on GitLab: <u>here</u>

23 / 6 / 2022

E. L. Gkougkousis

Temperature Regulation

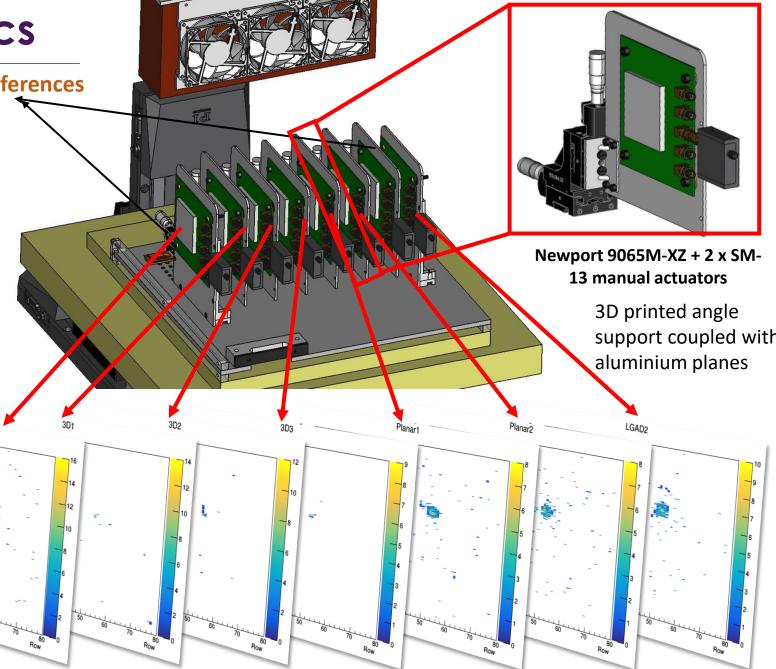

Running at a crisp -18 °C


> EnviE GitLab with schematics: <u>here</u>

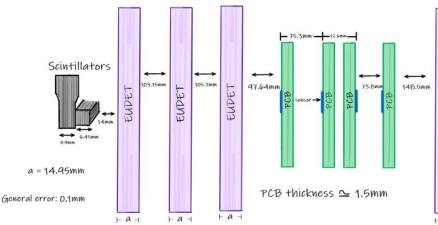
- ➢ Glycol cooling with temperature feedback Labview control
- \succ Humidity regulation though N₂ feeds

Environmental Expander V2.0 (EnviE)

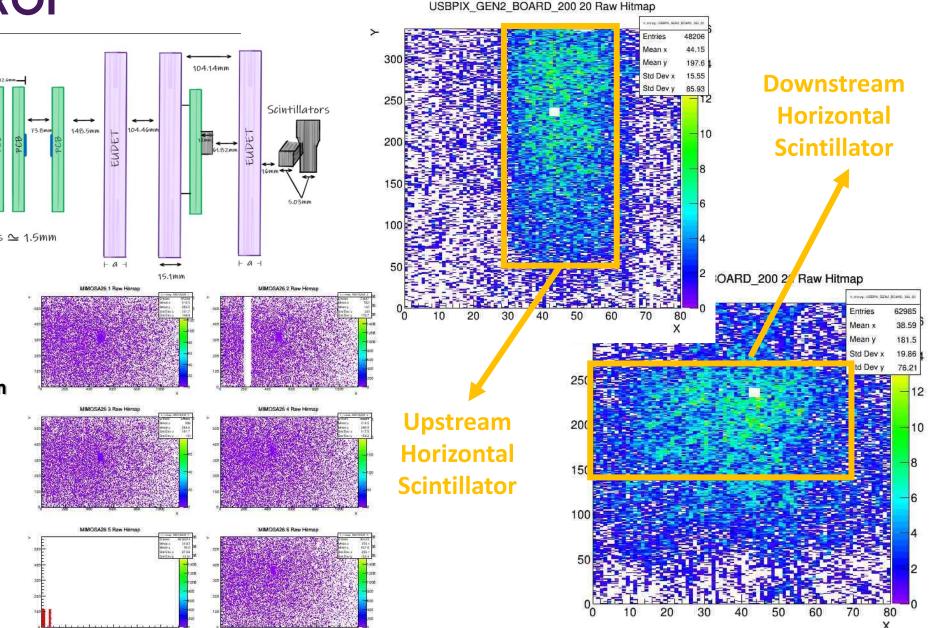
- ESP8266 based with integrated 10-bit ADC, I2C and WiFi 802.11b
- Integrated OLED 128X64 pixel screen
- High precision voltage dividers and sensor decoupling
- ARDUINO / LoUA core web interface
- Temperature resolution of 0.8 °C \pm 0.06 %
- Humidity resolution 0.1 % with temperature compensation

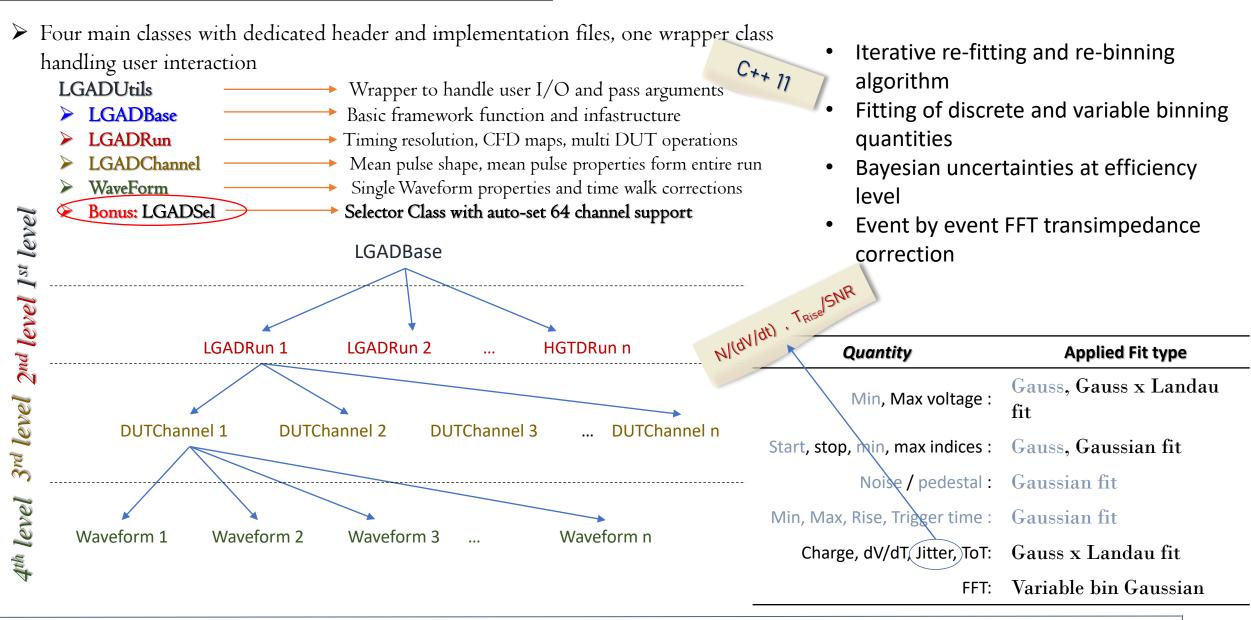

Alignment & Mechanics

HPK LGAD Timing references


LGAD1

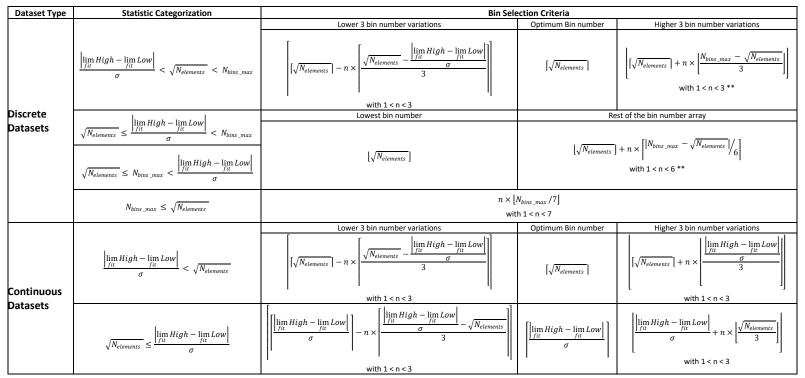
- Coincidences between DUTs and LGADs required for timing
- > Alignment crucial to increase data efficiency
- Efficiency defined by largest overlapping region
- Micrometric on-line alignment using projections on FEi4 matrix
- ROI defined in addition to other trigger conditions





Telescope Planes

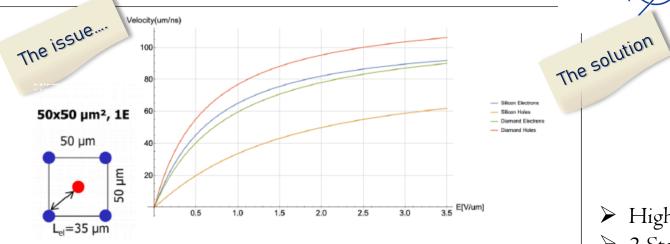
- 6 MIMOSA planes for tracking
- Plane no. 5 known to be bad
- Expected 5µm tracking resolution
- Estimated acquired number of events ~1M
- Limited beam control as parasitic user
- Suffer from low intensity and low data rates of EUDAQ



Analysis Framework

Iterative Re-fitter & signal templates

- Centralized fitter engine for all fits
- ➢ Fully automated, including limits, method and Minuit minimization
- ➢ 36 Iterations per fit with limits and bin size variation to determine best combination
- Vover-binning protection, automatic variable discreetness test
- Variable binning for FFT, frequency histograms
- Supported ROOFit, Standalone Minuit, Integral optimization or Shape


Template Method

Point by Point projection of all timewalk corrected (though CFD) signal pulses

File: LGADFits.cxx

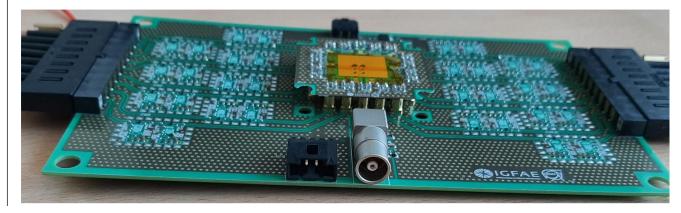
- Landau X Gauss fit on projected point by point distribution
- Extraction of a "characteristic" signal composed of the MPVs of the Point by point projection fits
- RooKeyPdf for analytical description of signal
- Re-iteration on all events and fit of each waveform with the extrapolated analytical signal description
- Re-caclculate all quantities

•16 Channel Board

- Assuming a linear filed dependence and a -15 V operation point at 35 μ m column distance: $|E| \cong 0.43 V/\mu m$
- Estimating drift velocity for electrons:

$$v_{drift}^{e} = \frac{\mu_{0,e} \times E}{\left[1 + \left(\frac{\mu_{0,e} \times E}{v_{sat.}^{e}}\right)^{\beta_{e}}\right]^{1/\beta_{e}}}$$

with $v_{sat.}^{e} = 107 \ \mu m/ns$, $\mu_{0,e} = 1417 \frac{cm^{2}}{v_{s}}$, $\beta_{e} = 1.109$

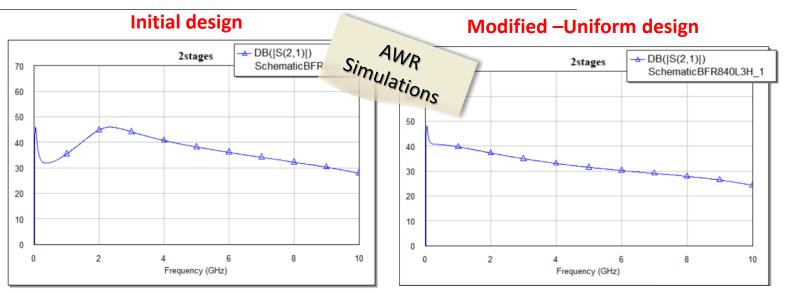

$v_{drift}^e \approx 41.4 \, \mu m/ns$

• Extrapolated Rise time and Frequency:

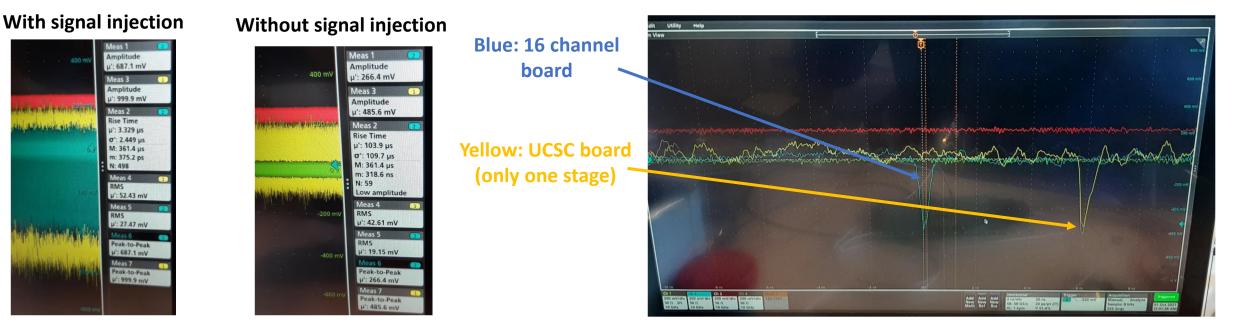
$$t_{Rise} \approx \frac{1}{3} \times t_s = \frac{1}{3} \times \frac{d/2}{v_{drift}^e} \approx 140 \ psec \Rightarrow 2.3 \ \text{GHz}$$

July 2021 October 2021 March 2022 August 2022 Timeline
Design submission Initial tests 2nd Mezzanine Test beam measurement iteration with planar matrix

- \clubsuit High frequency multichannel versatile board
- * Mezzanine design for fast sensor interchangeability
- Suitable for matrices (AC-LGAD applications) but also for single pad devices
- ➢ High Frequency SiGe discreate electronics @ 12 GHz bandwidth
- \blacktriangleright 2 Stage configuration with a transimpedance followed by a voltage stage
- → Low max current (~10mA) with well behaved gain linearity vs V_{DD}
- Ruggers 3000 High Frequency substrate
- Pre-assembled miniaturized coaxial edge connectors with panelmounted SMA plugs (Im cable length)
- \blacktriangleright 140 x140 mm outer dimensions



23 / 6 / 2022


E. L. Gkougkousis

GFAE

Simulations and performance

- Optimized design for uniform response with frequency
- No sharp gain change discontinuities
- No undershoot/overshoot observed
- ➢ Gain moderated to ∼70 for a two-stage configuration
- 20% Higher SNR than UCSC board (with both stages)
- 2 x SNR with respect to UCSC board + niniCircuits second stage amplifier
- On going energy and transimpedance simulation

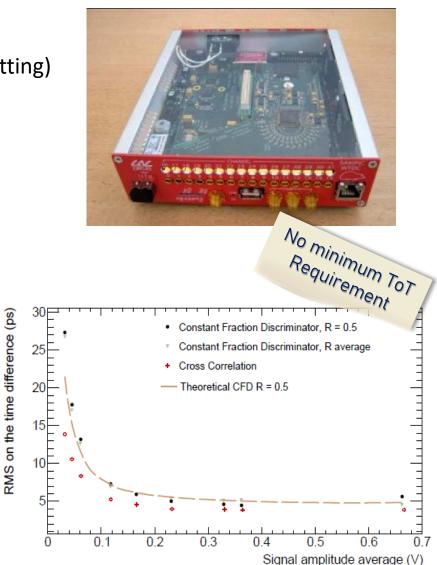
23 / 6 / 2022

Towards the Future: Sampic

The ASIC (SAMPIC)

- Technology: AMS 0.18µm
- Sampling: between 3 and 8.4 GS/sec on 16 channels (depends on DAC setting)
- 16 channels per chip
- Signal Bandwidth of 1.6GHz
- Discrimination noise 2 mV, chip noise < 1.3 mV RMS
- Max input Signal: 1V unipolar (0.1V to 1.1V)

ADC


- 8 to 11 bit Wilkinson ADC at 1.3GHz
- Upon triggering 64 samples digitalized in parallel per channel
- Resolution adjustment possible to improve timing by reducing bit count
- Time resolution between 5 ps (calibrated) and 15ps (uncalibrated)

Calibration

- Calibration files provided for all operational points of the ADC
- Channel by channel calibration to be performed by user
- 64 channels x 4 operation points = 256 calibration runs

Connectivity

- USB2.0 + LabWindows based software (provided)
- UDP Based Ethernet, direct PC connection no router support

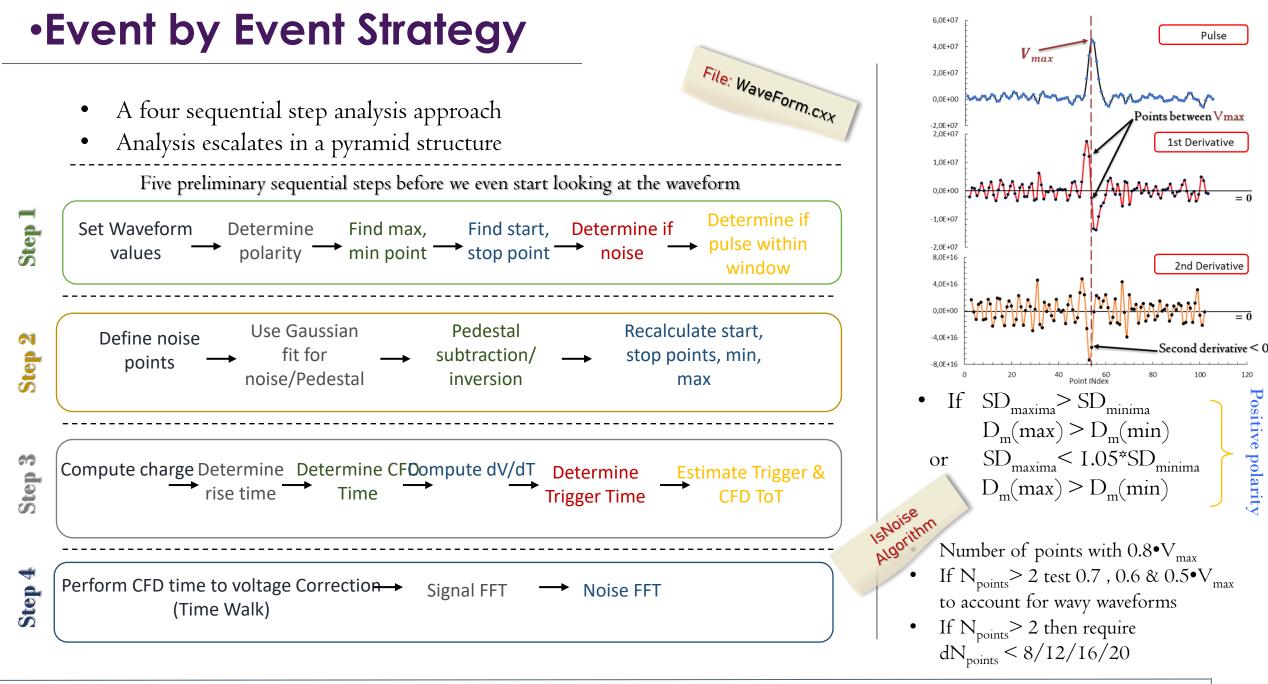
Conclusions

3D Pixels - Planar measurement campaign

- Several productions under investigation of different pixel size and thickness
- Estimate filed non-uniformity impact on time resolution vs pixel size
- Determine minimal acceptable thickness for time resolution applications (SNR)
- Investigate effects after irradiation up to 1e17 n_{eq}/cm² in protons and neutrons

Test-Beam Setup


- **Trigger Interface board:** Versatile, allows interfacing any acquisition instrument with EUDET
- Control Software: Polymorphic UI with seemingless multi-instrument support
- Cooling: XPS cold box with web interface temperature controllable system @ -18°C
- Mechanics: Micrometric alignment with individual DUT stages
- **Analysis Framework:** Advanced framework with signal shapes, iterative re-fitting and shape-based noise rejection


E. L. Gkougkousis

Primary Goals

Backup

TIB Schematics

•Fits infrastructure

Available fitting options

Root multi-iterative automatic fitting for:

I. Gauss

II. Gauss X Landau

int IterativeFit (std::vector<double> *w, std::pair<double, double> &gmean, std::pair<double, double> &gsigma, TH1D* &FitHist, double &minchi2, std::string methode = "Gauss", std::pair<int, int> points = std::make_pair(-1, -1))

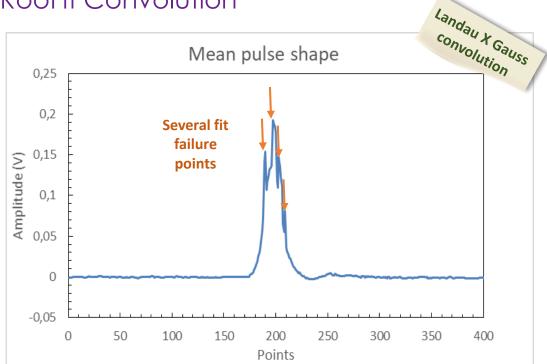
Unpinned 2-dimentional Linear fitting through RooFit and Minuit:

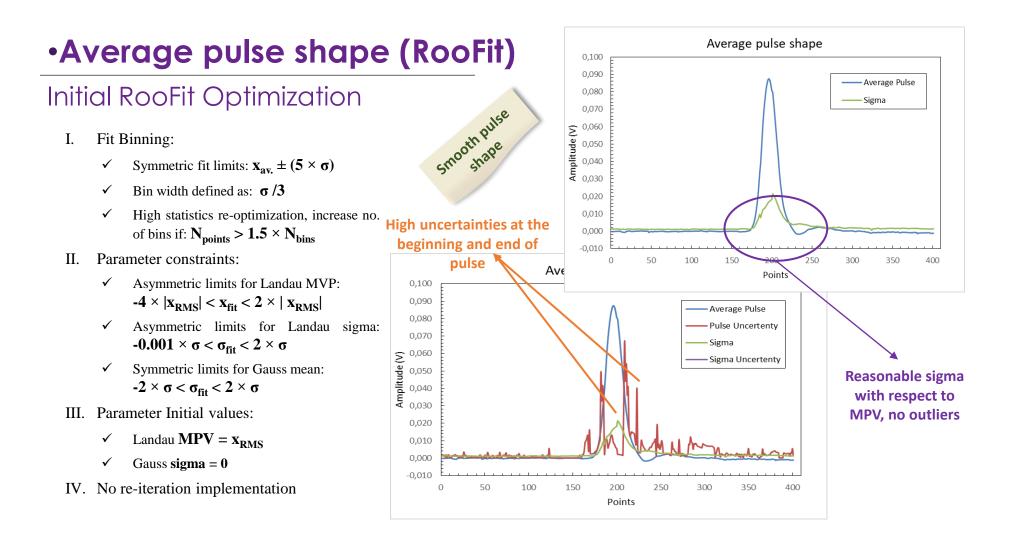
Roofit Convolution fitting (no iterative readjustment) for:

I. Gauss X Landau II. Gauss X Linear

int RooConvFit (std::vector<double>* vec, std::pair<double, double> &magMPV, std::pair<double, double>
 &magSigma, std::string conv);

> Tow point linear interpolation:

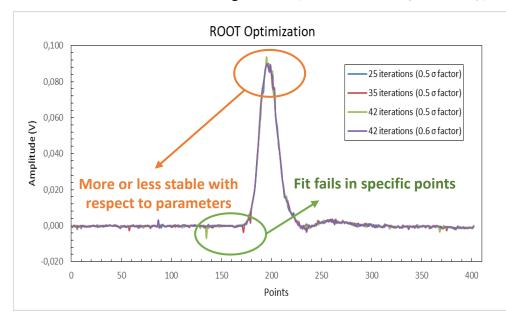

double LinearInter(double x1, double y1, double x2, double y2, double y3);

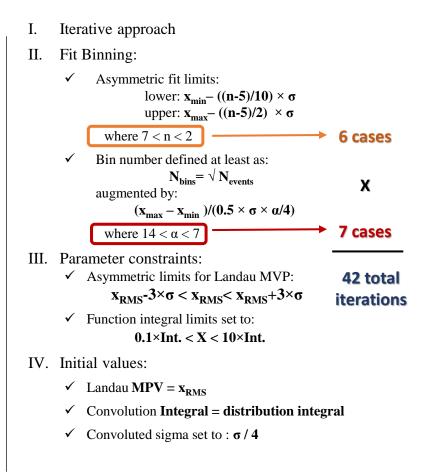

Fast Furrier transform algorithm: double FFT(std::vector<double> *w, Long64_t snrate, int start, int stop);

Average pulse shape (RooFit)

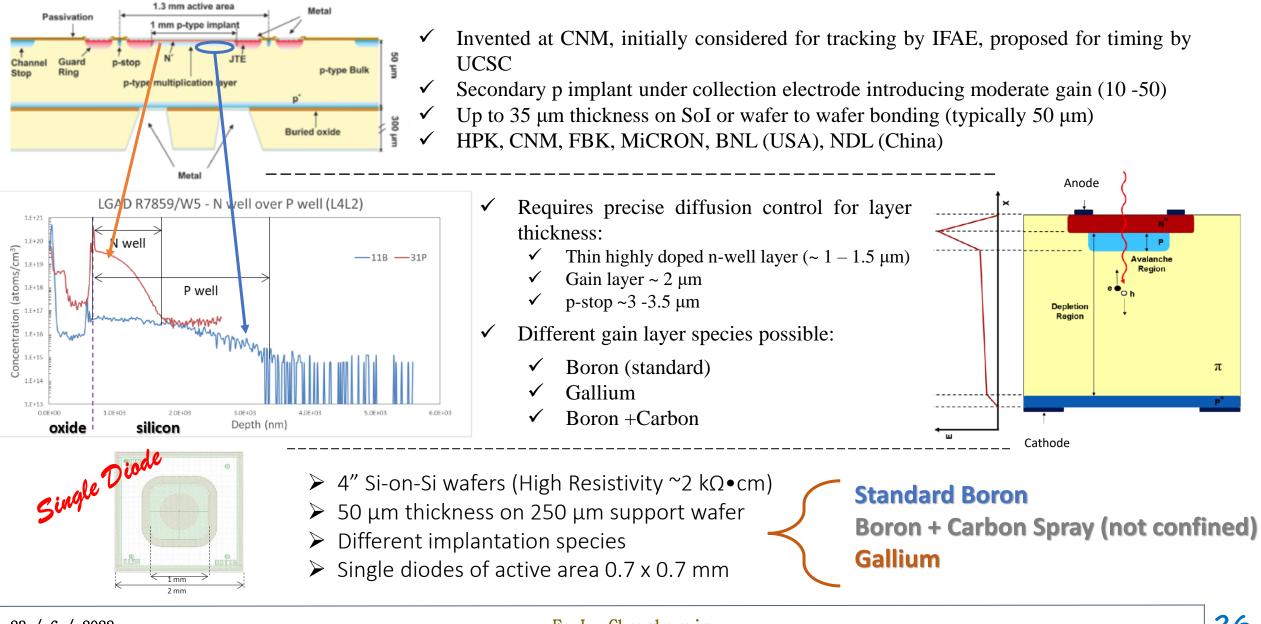
Starting point, Non-optimized RooFit Convolution

- I. Average calculated from 100 events
- II. Each waveform is time aligned at 20% CFD
- III. For all events, the same point of each waveform projected in TH1F
 - ✓ as many THIF as points in waveform
 - ✓ each with as many entries as events (100 here)
- IV. Each TH1F fitted with a Landau X Gauss distribution
- V. MPV, sigma and uncertainty extracted
- VI. Fitting performed in RooFit using RooFit Convolution and Minuit
- VII. No starting parameters or optimization
- VIII.Plot the MPVs of each point in a single waveform





Average pulse shape (Root)


Root Optimization (no RooFit)

- Constraint parameter values but not fixed
- Manually defined convolution function
- 1000 convolution steps
- Select the fit with the best agreement (minimization of $|1-x^2/NDF|$)

•LGAD Time Reference

