Study of the spectrometric performance of SiC detectors at High Temperature

M.C. Jiménez-Ramos^{1,2*}, J. García López^{1,3}, A. García Osuna¹, G. Pellegrini4, P. Godignon⁴, J.M. Rafí⁴, G. Rius⁴, and S. Otero-Ugobono⁴

> ¹ Centro Nacional de Aceleradores (CNA, US-CSIC-Junta de Andalucía) ² Departamento de Física Aplicada II. Universidad de Sevilla ³ Departamento de Física Atómica, Molecular y Nuclear. Universidad de Sevilla ⁴Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC)

(*) mcyjr@us.es

M.C. Jiménez-Ramos

40th RD50 Workshop

TECHNOLOGY

- 1) GRACE PROJECT.
- 2) NUCLEAR FUSION.
- 3) FAST-ION LOSS DETECTOR (FILD).
- 4) SIC DETECTOR MANUFACTURED AT IMB-CNM.
- 5) SIC MEASUREMENTS AT HIGH TEMPERATURE AT THE 3 MV TANDEM ACCELERATOR OF THE CNA.
- 6) RESULTS.

Institutes involved

1) GRACE PROJECT

GRACE PROJECT

GRACE: Graphene-enhanced RAdiation detector on Silicon Carbide for harsh Environments RTC-2017-6369-3

- CNM is developing innovative radiation detectors that can be robustly operated in harsh environments.
- **Device tolerant to:**
- **High radiation levels** (neutron, protons, heavy ions, α- and β- particles)
- High temperature, at least (200 to 500 °C)
- Spectrometric characterisation of the detectors at room temperature and at high temperature has been carried out at the CNA.

M.Moll , NIM in Physics Research A 511 (2003) 97-105

Property	4H–SiC	Si
<i>E</i> ₉ at (300K) (eV)	3.27	1.12
$\mu_{\rm e} ({\rm cm}^2 {\rm V}{\rm s}^{-1})$	800	1500
μ^{h} (cm ² V s ⁻¹)	115	450
e–h energy (eV)	8.4	3.6
Displacem. (eV)	25	13-20
Thermal conductivity (Wm ⁻¹ K ⁻¹)	490	130
Intrinsic carriers at (300K) (cm ⁻³)	6.7x10 ⁻¹¹	1.4x10 ¹⁰

Wide bandgap :

Reduces the leakage current, maintaining low noise levels even at high temperatures. Insensitive to visible light.

High atomic displacement threshold :

Should make the material more radiation resistant.

Lower concentration of intrinsic carriers and higher thermal conductivity: Semiconducting behaviour at high temperatures.

GRACE PROJECT: MAIN POTENTIAL APPLICATIONS

Nuclear fusion reactors

-Plasma diagnostic

Aerospace

-Sensors and electronics

Medical

-Dosimetry in FLASH therapy and microdosimetry

2) NUCLEAR FUSION

High time resolution video of a plasma from ASDEX Upgrade tokamak.

(Max-Planck-Institut für Plasmaphysik, Garching, Germany)

NUCLEAR FUSION

- Two light atoms are fused together generating a heavier atom with the aim of generating energy.
- D-T presents largest cross section for a fusion reaction

 ${}^{2}_{1}D + {}^{3}_{1}T = {}^{4}_{2}\text{He} + {}^{1}_{0}n + 17.6 \text{ MeV}$ ${}^{2}_{1}D + {}^{3}_{2}\text{He} = {}^{4}_{2}\text{He} + {}^{1}_{1}H + 18.4 \text{ MeV}$ ${}^{2}_{1}D + {}^{2}_{1}D = {}^{1}_{0}n + {}^{3}_{2}\text{He} + 3.27 \text{ MeV}$ ${}^{2}_{1}D + {}^{2}_{1}D = {}^{1}_{1}H + {}^{3}_{1}T + 4.032 \text{ MeV}$

At temperatures required for fusion, all atoms are ionised, in state called "plasma".

M.C. Jiménez-Ramos

40th RD50 Workshop

FAST IONS PLAY CRITICAL ROLES IN HEATING AND PLASMA STABILITY

Good confinement of fast ions - fusion reactions, Neutral Beam Injection (NBI) and radio frequency (RF) - is essential for

- Fusion performance •
- Device integrity
- Fast-ions are subject to losses by
 - Insufficient confinement properties of • magnetic field (prompt losses)
 - **Coulomb** collisions •
 - Interaction with magnetohydrodynamics • fluctuations.

3) FAST-ION LOSS DETECTOR (FILD)

Mauricio Rodríguez-Ramos Ph.D: "Absolute calibration and application of the scintillator-based detector for fast ion losses in nuclear fusion devices" 2017. CNA & ASDEX Upgrade.

FILD* PROVIDES FULL INFORMATION ON VELOCITY-SPACE OF ESCAPING IONS

- Design based on a similar TFTR detector J. Zweben et al, NF'89
- The strike points of the ions on the scintillator plate depend on their gyroradius and pitch-angle (~magnetic spectrometer)
- Active component: thin film novel scintillator material SrGa₂S₄:Eu²⁺ (TGGreen) with short decay time (490 ns) and high efficiency.

M. Garcia Munoz et al. JINST'11

THE ABSOLUTE PHOTON YIELD DECREASES WITH OPERATION TEMPERATURE.

• During tokamak operation, heat load at first wall could make FILD operate a T>RT.

M Rodriguez-Ramos et al 2017 NIM B 403, 7–12.

lon	κ _{200⁰C} (%)	κ _{300⁰C} (%)	к _{400⁰С} (%)	κ _{500⁰C} (%)
H+	47±12	10±3	1.3±0.3	0.10±0.03
D+	41±10	10±3	1.8±0.4	0.20±0.05
He ⁺⁺	30±7	10±3	1.7±0.4	0.20±0.05

Quenching of material for T > 400° C !!!

4) SIC DETECTOR MANUFACTURED AT IMB-CNM

SIC DETECTOR MANUFACTURED AT IMB-CNM

Single diode with extra metal layer. Run 13575.

Homogeneity IBIC measurements on the microprobe line at CNA with He²⁺ @ 3.5 MeV. The mean standard deviation is ~1%.

CCE homogeneity study on twin diode.

5) SIC MEASUREMENTS AT HIGH TEMPERATURE AT THE 3 MV TANDEM OF THE CNA

SIC MEASUREMENTS SETUP

Furnace accommodated inside the chamber (RT-500 °C)

Vacuum chamber for high temperature measurements.

- TO257 package

- Ag Sintering
- Gold bondings

ALPHA SOURCE MEASUREMENT AT RT FOR SETTING THE OPERATION VOLTAGE

MULTICHANNEL CALIBRATION AT RT

He, E

6) RESULTS

REVERSE CURRENT VS T^a

First heating cycle: Ic reaches a maximum and then decreases

REVERSE CURRENT VS T^a

REVERSE CURRENT VS T^a

M.C. Jiménez-Ramos 40th RD50 Workshop

40th RD50 Workshop

RESOLUTION AFTER "CURING" PROCESS

5 heating cycles were performed

Once the detector is "cured", the resolution does not change with temperature, it remains constant at around 2% for several heating cycles!!!

PAIR CREATION ENERGY VS T

M.C. Jiménez-Ramos 40th RD50 Workshop

- SiC detectors have been developed at IMB with very good spectrometric response until 450°C.
- This opens possibilities to use these detectors to monitor the fast ions losses in fusion plasmas.
- The radiation hardness of these devices at high temperature is under study.

THANK YOU FOR YOUR ATTENTION

Acknowledgements to :

*Project RETOS-EMPRESA: RTC-2017-6369-3

PROJECT LEADER (US-1380791) "US/JUNTA/FEDER, UE"

VI PPIT - US

UNIÓN EUROPEA

Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

M.C. Jiménez-Ramos 40th RD50 Workshop

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD BACKUP

OUTLOOK

SIC MEASUREMENTS AT HIGH TEMPERATUREAT THE 3 MV TANDEM OF THE CNA

M.C. Jiménez-Ramos 40th RD50 Workshop