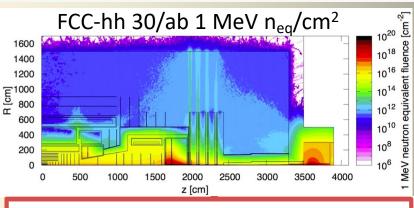


M.Mikuž

University of Ljubljana & Jožef Stefan Institute

ECFA Detector R&D Roadmap TF3 Solid State Detectors Zoom, April 23rd, 2021

Extreme ?


- What is extreme ?
- extreme (Ik'stri:m)

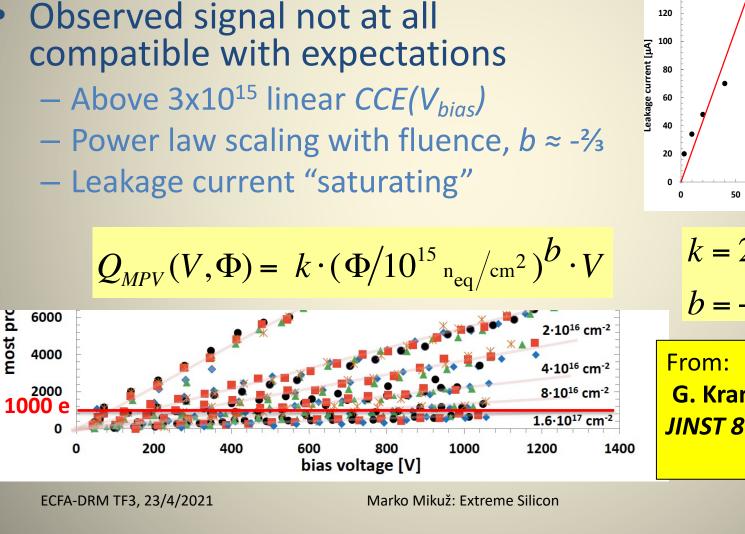
adj

1. being of a high or of the highest degree or intensity: extreme cold; extreme difficulty.

2. exceeding what is usual or reasonable; immoderate: extreme behaviour.

- A rather subjective measure
 - for LHC 10¹⁵ n_{eq}/cm² was considered extreme
 - design was 730/fb @14TeV...
 - HL-LHC takes it to nx10¹⁶ (vertex) or even 10¹⁷ (FW calo)
 - 4000/fb @14TeV
 - FCC-hh is specifying towards 10¹⁸ for the tracker (M. Aleksa: FCC-hh req's)
 - 30/ab @100TeV
 - 300 MGy TID in addition (not addressed)
 - Ratio 1:20:600 !
 - well, you need ~7²≈50 in HL/FCC lumi...
- What is the limit of tracking sensors ?
 - TRIGA, NPP and ITER are $10^{21} \leftrightarrow 10^{24}$

Central tracker:


- first IB layer (2.5 cm): ~5-6 10¹⁷ cm⁻²
- external part: ~5 10¹⁵ cm⁻²

Forward calorimeters: ~5 10¹⁸ cm⁻² for both the EM and the HAD-calo

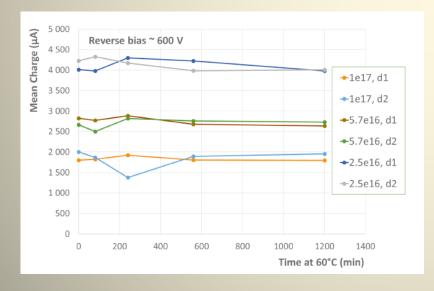
Expectations for 10¹⁷ n_{eq}/cm²

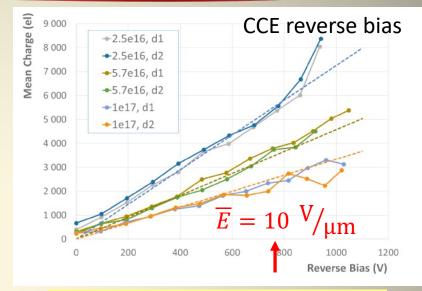
- For a ~yearly replacement of FCC-hh inner tracker !
- Linear extrapolation from low fluence data
 - Current: *I_{leak}* = 4 A/cm³ @20°C
 - 2 mA/cm² (2W @ 1 kV) for 300 μm thick detector @ -20°C
 - Depletion: $N_{eff} \approx 1.5 \times 10^{15} \text{ cm}^{-3}$
 - $FDV \approx 100 \text{ kV}$
 - Trapping $\tau_{eff} \approx 1/40$ ns = 25 ps
 - $Q \approx Q_0/d v_{sat} \tau_{eff} \approx 80 \text{ e}/\mu\text{m} 200 \ \mu\text{m/ns} 1/40 \text{ ns} = 400 \text{ e} \text{ in very}$ high electric field (>>1 V/µm)

• Looks much like *Mission Impossible* (part n...)

n⁺p "spaghetti" strips, 300 μm

CCE measurements up to $1.6 \times 10^{17} n_{ea}/cm^2$




$$k = 26.4 e_0/V$$

 $b = -0.683$

G. Kramberger et al., JINST 8 P08004 (2013).

More measurements on thin detectors

- 75 µm epi detectors from CNM on low-resistivity substrate
- Irradiated to 0.25, 0.57 and 1.0x10¹⁷ n_{eq}/cm²
- CCE in reverse and FW
- Annealing 1200 min @ 60°C

$$Q_{mean} = k \cdot \phi^b \cdot V$$

$$k_{75} = 44 e_0/V$$

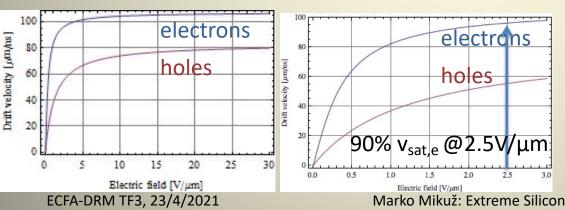
$$b_{75} = -0.56$$

Thinner is better!

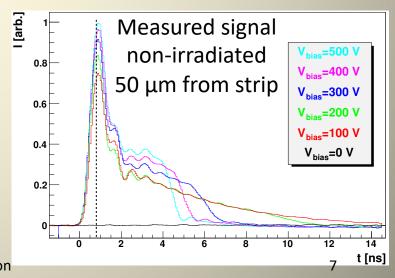
From: I.Mandić et al., JINST 15 P11018 (2020).

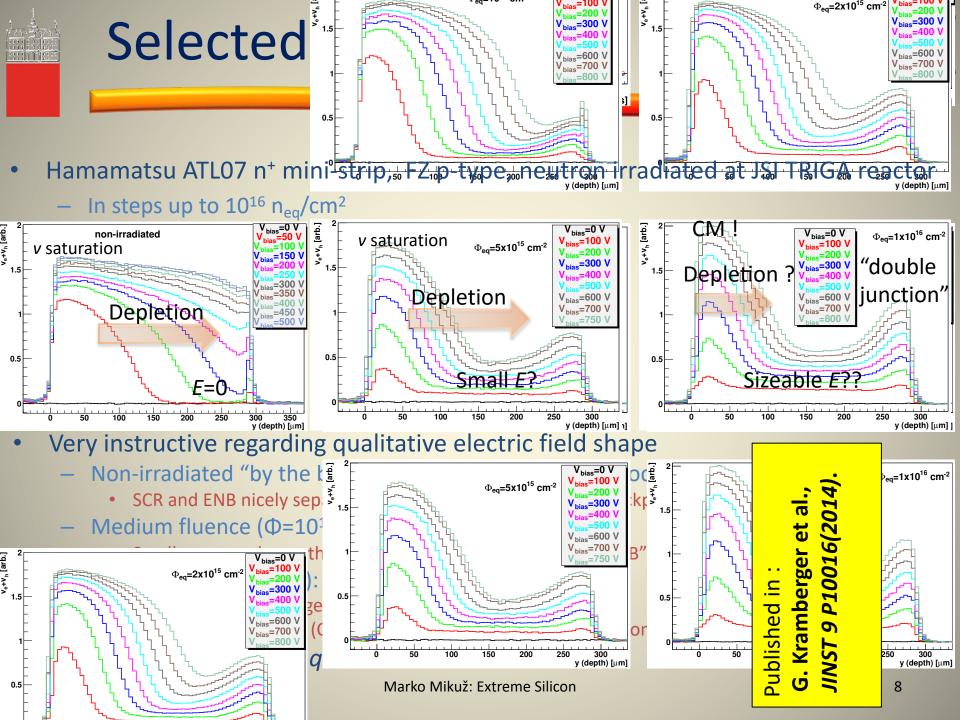
5

ECFA-DRM TF3, 23/4/2021


Marko Mikuž: Extreme Silicon

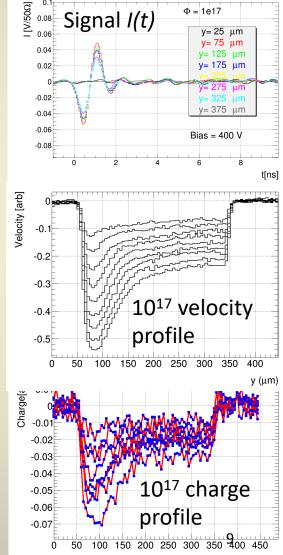
Linear CCE(V) ??


- What could be linear
 - SCR governed CCE(V) after irradiation (VV), highly resistive ENB (VV), without trapping
 - Trapping dominated with non-saturated drift velocity
- What is *not* linear
 - velocity saturation
 - charge multiplication
 - double junction
 - field in ENB
- Just a nice coincidence or some physics behind ?
 - look into silicon to search for an answer
- Using edge-TCT to probe silicon


Electric Field Measurement

- Initial signal proportional to velocity sum at given detector depth
- Caveats for field extraction
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with v_{sat} hit electrode in 500 ps
 - Mobility depends on E
 - *v* saturates for *E* >> 1V/μm

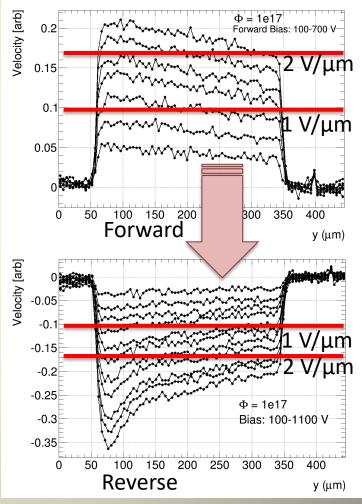
 $I(t=0) = q \cdot v \cdot \vec{E}_w =$ $= N_{e-h} e_0 \cdot (v_e + v_h)/d =$ $= N_{e-h} e_0 \cdot (\mu_e + \mu_h) \cdot E(x)/d$



Extending the Reach

- In 2014 added 5x10¹⁶ and 10¹⁷
 n_{eq}/cm² measurements of the same detector
 - 10¹⁶ of this fluence fully annealed, the rest 80 min @ 60°C
- Intrinsic feature signal oscillations
 period ~5/4 ns
 - LRC (C~2pf => L~20 nH ~ 1cm of wire)
- Velocity (slope) and charge (integral) yield consistent results
- should be, as $Q \approx Q_0 v_{sum} \tau_{eff} / d$

ECFA-DRM TF3, 23/4/2021

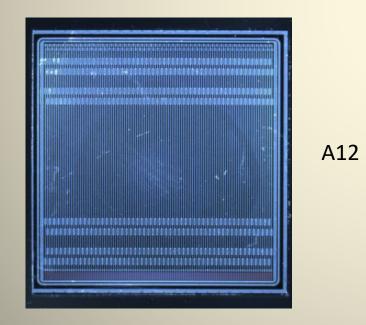

Marko Mikuž: Extreme Silicon

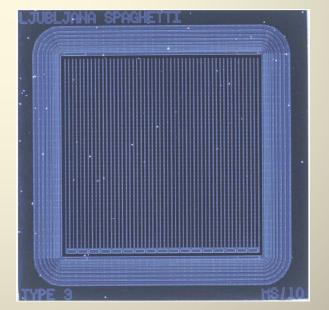
Absolute Field Measurement

- Solution: concurrent forward bias v_{sum} measurements
 - Ohmic behaviour with some linear (field) dependence
 - constant (positive) space charge
 - can use $\int E(y)dy = \overline{E}d = V$ to pin down field scale
 - corrections from v(E) non-linearity small
- Use same scale for reverse bias!
- FW measurements up to 700 V
 - know E scale up to 2.33 V/μm
 - can reveal v(E) dependence

ECFA-DRM TF3, 23/4/2021

Proton Irradiations

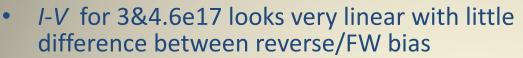


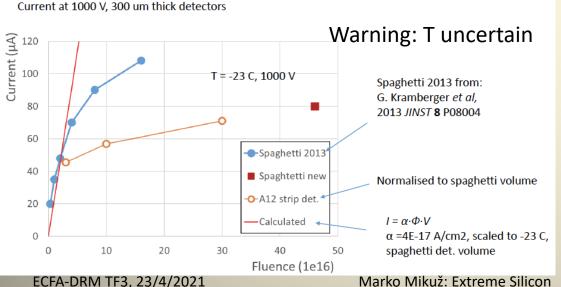

- 5 sample pairs of ATL12 mini-strips irradiated at CERN PS during summer 2015
 - got 0.5, 1.0, 2.9, 11, 28e15 protons/cm², no scanning
 - NIEL hardness factor 0.62
 - thanks to CERN IRRAD team
 - took 41 PS days to reach the highest fluence
- Covers HL-LHC tracker range well

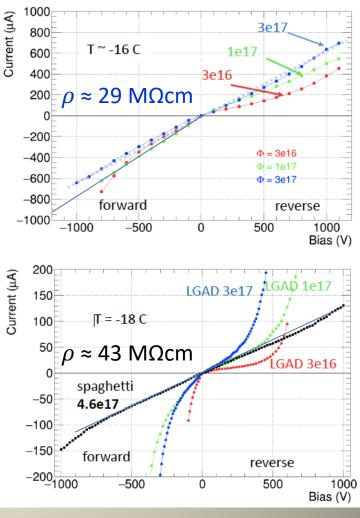
 does really not look practical for 10¹⁷++
- 2 samples per fluence investigated by E-TCT for all fluences
 - concurrent forward and reverse bias measurements

Additional irradiations

- 3e17 n_{eq}/cm², JSI reactor neutrons
 - A12 mini, 7x8 mm², 75 μ m pitch, 300 μ m thick
 - Also to 3e16, 1e17
 - Spaghetti: 4x4 mm2, n-on-p, strip pitch 80 um, 300 um thick, strips connected together at side
 - 1.6e17 received previously, 4.6e17 total



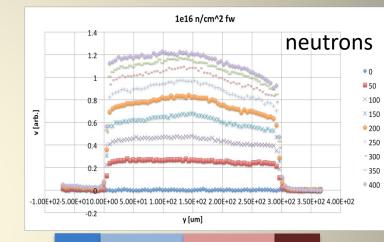

Spaghetti


ECFA-DRM TF3, 23/4/2021

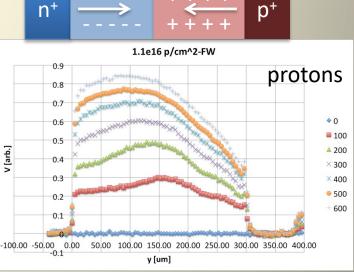
Basic measurements

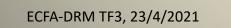
- No breakdown, as observed in LGAD's
- I @1000 V does not scale linearly with fluence !
 - Not governed by generation current?
- Tried to measure 4.6e17 spaghetti *CCE* with ⁹⁰Sr
 - No signal above background observed up to 320 V
 - Magic formula predicts 120e for 4.6e17 @320 V

Mobility Considerations FW bias


- For forward bias can extract v(E) up to a scale factor
- **Observe less saturation than predicted**

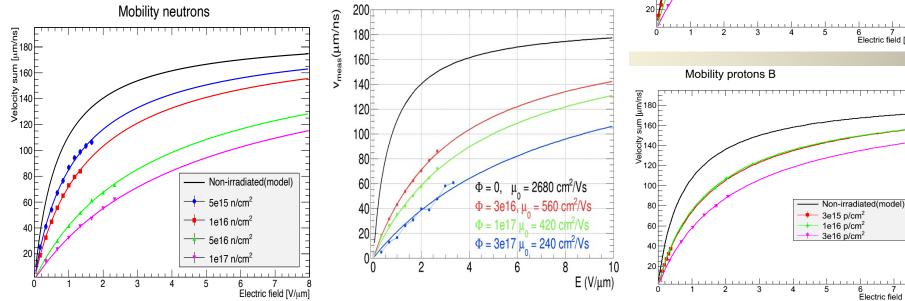
Model with

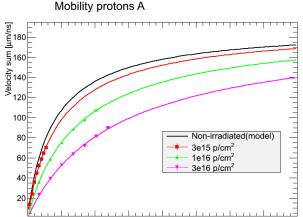

$$v_{sum}(E) = \frac{\mu_{0,e}E}{1 + \frac{\mu_{0,e}E}{v_{e,sat}}} + \frac{\mu_{0,h}E}{1 + \frac{\mu_{0,h}E}{v_{h,sat}}}$$


- keep saturation velocities at nominal values @-20°C ($v_{e,sat}$ = 107 µm/ns; $v_{h,sat}$ = 83 µm/ns)
- float (common) zero field mobility degradation
- fit v(E) for $\phi_n \ge 5 \times 10^{15}$ and $\phi_n \ge 3 \times 10^{15}$

n.b. FW profiles less uniform for lower fluences & protons; departures from average field still small, corrections O(%)

n⁺


Mobility Fits


Electric field [V/µm]

Electric field [V/um]

Data fits model almost perfectly

- μ_0 degradation the only free parameter, scale fixed by $v_{sum,sat}$
- At 3e17 E range too limited (v(E) linear), regard result as upper limit

Mobility Results

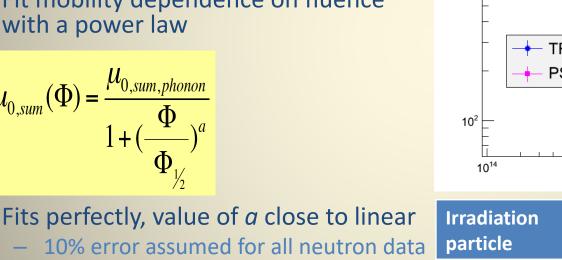
- factor of 2 at $10^{16} n_{eq}/cm^2$, 6 at $10^{17} n_{eq}/cm^2$, >10 at $3x10^{17} n_{eq}/cm^2$
- need 2x/6x/>10 higher *E* to saturate v !

E correspondingly higher *E* for charge multiplication !

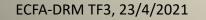
μ _{0,sum}	Фр	μ _{0,sum}
[cm ² /Vs]	[10 ¹⁵ n _{eq} /cm ²]	[cm ² /Vs]
	2680	
1661 ± 134	1.6	2063± 188
1238 ± 131 6.1		1337± 47
560	15.4	817± 42
555 ± 32		
407 ± 40		
420	T=-20°C	
<240		
	$[cm^{2}/Vs]$ 1661 ± 134 1238 ± 131 560 555 ± 32 407 ± 40 420	[cm²/Vs] $[10^{15} n_{eq}/cm²]$ 26801661 ± 1341.61238 ± 1316.156015.4555 ± 32407 ± 40420T=4

ECFA-DRM TF3, 23/4/2021

Marko Mikuž: Extreme Silicon


Mobility Analysis

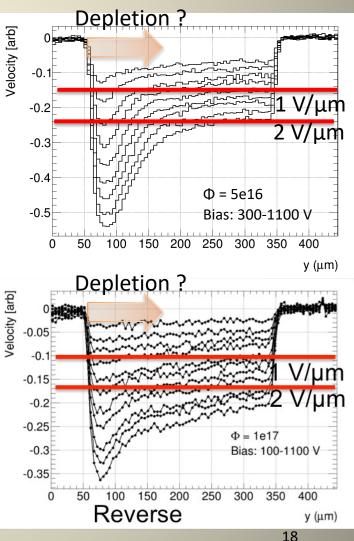
Mobility governed by hard scattering on acoustic phonons and traps


$$\frac{1}{\tau} = \frac{1}{\tau_{ph}} + \frac{1}{\tau_{trap}}$$

Fit mobility dependence on fluence with a power law

$$\mu_{0,sum}(\Phi) = \frac{\mu_{0,sum,phonon}}{1 + (\frac{\Phi}{\Phi_{\frac{1}{2}}})^a}$$

- At same NIEL, mobility decrease worse for protons
 - **NIEL violation ? Large errors ?**


 μ_0 [cm²/Vs] 10^{3} **TRIGA** neutrons **PS** protons 10¹⁵ 10¹⁶ 10¹⁷ Fluence [n_{eg}/cm²] $\Phi_{\%}$ a σ_{a} $\sigma_{\sigma_{2}}$ /1015 /1015 6.9 1.7 **Reactor neutrons** -0.68 0.08 6.1 **PS** protons -0.900.19 1.0

Mobility sum vs. Fluence

Non-irradiated mobility sum

Reverse Bias Field Profile

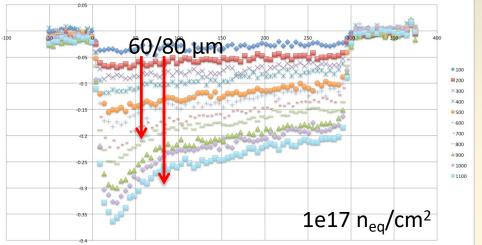
- Two distinct regions at high biases
 - Large region from backplane with (small) slope in the field
 - constant (small, negative) spacecharge
 - E = j.p at junction ? like "ENB" ?
 - indication of thermal (quasi)equilibrium: $np = n_i^2$?
 - thus no current generation ?
 - Small region at junction building up with bias
 - depleted space-charge region ?
 - source of generation current ?

SCR Consistency

Hard to estimate SCR extent,

~80 μm @ 600 V; ~120 μm @ 1000 V

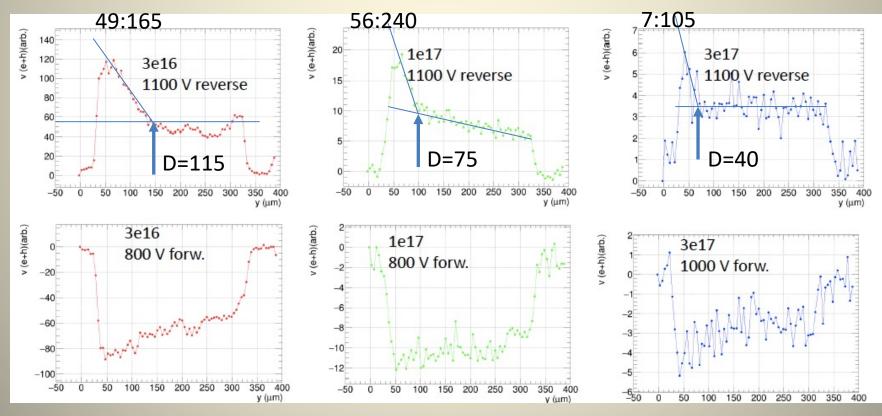
~60 μm @ 600 V; ~80 μm @ 1000 V


especially at lower bias and

highest fluence

A crude estimate

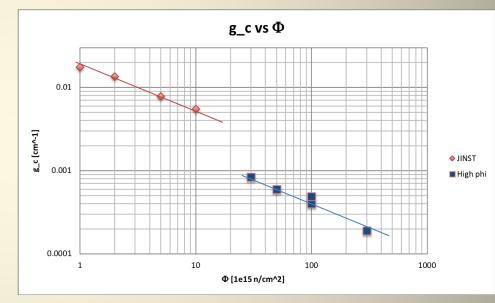
 $- 10^{17} n_{eq}/cm^2$:


 $- 5 \times 10^{16} n_{eg} / cm^2$:

- Predicted/measured currents
 - 5x10¹⁶ n_{eq}/cm²: 300/300 μA @ 600 V; 400/500 μA @ 1000 V
 - 10¹⁷ n_{eq}/cm²: 400/300 μA @ 600 V; 500/600 μA @ 1000 V
 - Not compatible with linear I-V at 3 & 4.6e17 pure resistor ?
- Reasonable agreement with current generated exclusively in SCR
 - n.b. current "saturation" observed @1000V in JINST 8 P08004 (2013)
- Acceptor introduction rates: $g_c \approx 6/4 \times 10^{-4} \text{ cm}^{-1}$
 - substantial part (up to 80 %) of voltage drop "spent" in "ENB"
 - matches well data in *JINST 9 P10016(2014)* (up to 10¹⁶)

ATL12 up to 3e17

- Estimate of SCR width 115 -> 75 -> 40 μm
- V_{drop} in SCR only 23 -> 19 -> 6 % of 1100 V



ECFA-DRM TF3, 23/4/2021

Marko Mikuž: Extreme Silicon

Acceptor introduction in SCR

- Stable acceptor introduction rate g_c drops by nearly two orders of magnitude from low fluences to 3x10¹⁷
 - Observed up to 10¹⁶ in JINST 9 P10016(2014)
 - Looks like a power law
 - g_c in JINST not taking into account voltage drop out of SCR – higher values of g_c

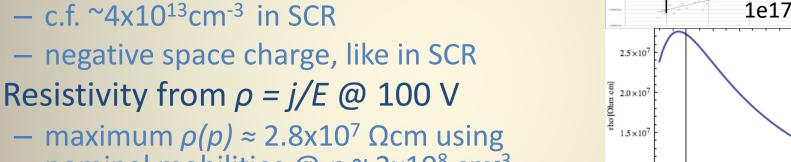
500V

 1.0×10^{7}

 2×10^{8}

 4×10^{8}

ρ


 $[10^7 \,\Omega \text{cm}]$

3.3

3.0

2.8

50 µm


Ф

 $[n_{eq}/cm^2]$

1e16

5e16

1e17

Space charge in "ENB" rising with

- 1.6x10¹¹@ 100 V, 9.2x10¹¹cm⁻³ @

bias, e.g. for $10^{17} n_{ea}/cm^2$

- c.f. ~4x10¹³cm⁻³ in SCR

- compatible with measured mobility sum and $p^{\sim}O$ (10⁹) cm⁻³
- Compatible also with ρ from *I-V* for 3 & 4.6e17

22

250 μm

ρ(p)

 8×10^{8}

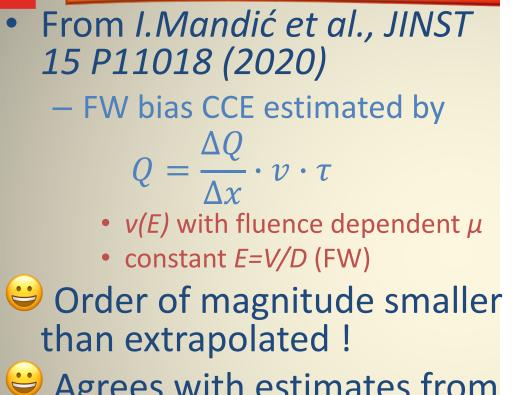
р

 $[10^9 \text{ cm}^{-3}]$

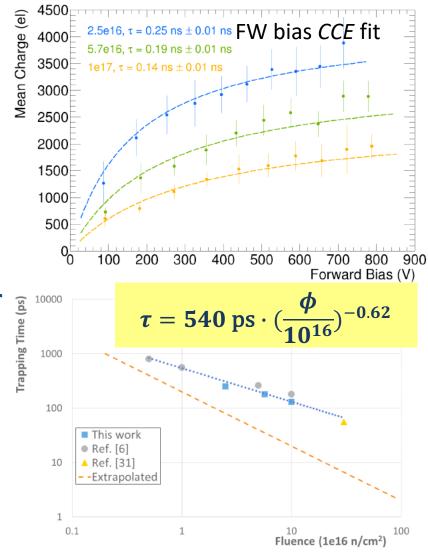
0.5

1.5

2.1


 1×10^{9}

 6×10^{8}


n[cm_3]

Trapping analysis

- Agrees with estimates from reverse bias CCE (backup)
- Trapping independent of bias, seen in wave-froms

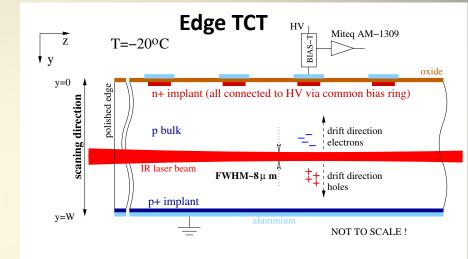
Summary

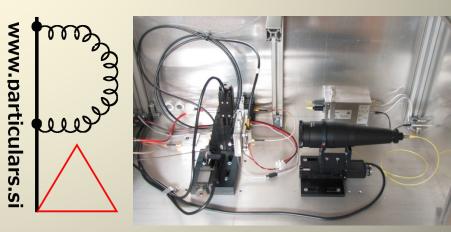
- Measurements performed on Si detectors irradiated to extreme fluences
 - Neutrons from 10^{15} to 4.6×10^{17} n_{eq}/cm², PS protons from 5×10^{14} to 3×10^{16} p/cm²
 - Velocity vs. electric field impact observed and interpreted as reduction of zero field mobility
 - Zero field mobility follows power law with $|a| \le 1$, $\Phi_{\frac{1}{2}} \approx 10^{16} \text{ n/cm}^2$
 - Protons degrade mobility more than neutrons
 - Induces resistivity increase in-line with measured *I-V*
 - Exhibits adverse effect on charge multiplication !
 - Simple field profile for very high neutron fluences
 - Diminishing SCR and highly resistive ENB
 - Effective acceptor introduction rates reduced by factor ~100 wrt low fluences
 - Current much lower than anticipated. Generated in SCR only ? Ohmic at highest fluences...
 - Trapping estimates for very high neutron fluences
 - from charge collection in FW and reverse bias
 - from waveforms
 - All estimates point to severe non-linearity of trapping with fluence, 10x lower at 10¹⁷
 - Trapping appears independent of electric field
- Conclusion: Low fluence extrapolations do not work at all !
- ... go out and *measure* to get anything working at *extreme* fluences !!!

Implications for TF3

- Basic bulk silicon properties in the fluence range to master are the prerequisite to any inner tracking detector design for FCC-hh
- They need to be *measured*
 - Only pioneering consistency checks done so far
- Need resources far beyond current ones
 - Facilities
 - Measurement techniques
 - People
 - at least for the first ~5 of the 20 years
- New RD or additional RD50 research line essential for achieving the goal
 - EU funding would help to rise funds at national level

Conclusion


NOTHING IS IMPOSSIBLE, THE WORD **ITSELF SAYS** "I'M POSSIBLE" - AUDREY HEPBURN


ECFA-DRM TF3, 23/4/2021

Backup Slides

• Edge-TCT

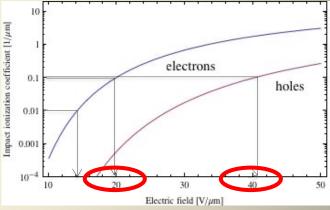
- Generate charges by edge-on IR laser perpendicular to strips, detector edge polished
- Focus laser under the strip to be measured, move detector to scan
- Measure induced signal with fast amplifier with sub-ns rise-time (Transient Current Technique)
- Laser beam width 8 µm FWHM under the chosen strip, fast (40 ps) and powerful laser
 - Caveat injecting charge under all strips effectively results in constant weighting (albeit not electric !) field

Charge Multiplication

Multiplication is textbook physics

- e.g. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981
 - Ch 1.6.4 High-Field Property
 - Velocity saturation, impact ionization
 - Ch 2.5.3 Avalanche Multiplication
 - Junction break-down

Measured impact ionization


- Electrons create 1 pair in 10 μm at E~20 V/μm (100 μm at 14 V/μm), holes need E~40 V/μm
- Holes need ~1 mm for pair creation at E~20 V/µm
 - Neglect hole multiplication in signal creation altogether
 - Need to invoke hole multiplication for junction breakdown

• $\alpha_e >> \alpha_h$ - Nature gentle to us (in silicon)

- Large range in *E* where electrons multiply without inducing breakdown
- But beware of (too) high electric fields !

$$\alpha_{e,h}(E) = \alpha_{e,h}^{\infty} e^{-b_{e,h}/E}$$

A. G. Chynoweth, Phys. Rev. 109, 1537(1958).

R.VAN OVERSTRAETEN and H.DE MAN, Solid-State Electronics 13(1970),583-608. W.MAES, K.DE MEYER, R.VAN OVERSTRAETEN, Solid-State Electronics 33(1990),705-718.

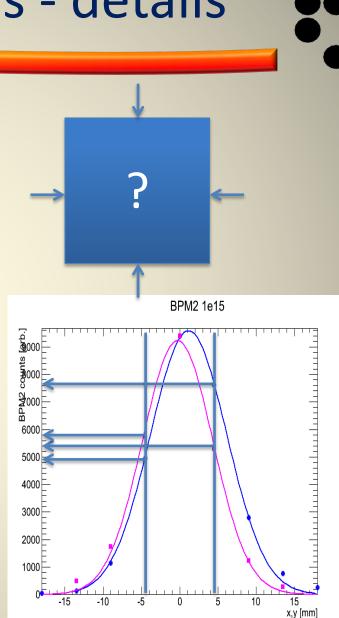
$$\int_{0}^{w} dx \, \alpha_{e}(x) e^{\int_{0}^{x} (\alpha_{e}(x') - \alpha_{h}(x')) \, dx'} = 1$$

Breakdown condition, can swap α_{e} with α_{h}

Reverse velocity profiles

Something's fishy... never repeat experiments ?!
 Explained by PS beam profile variation on sample edges

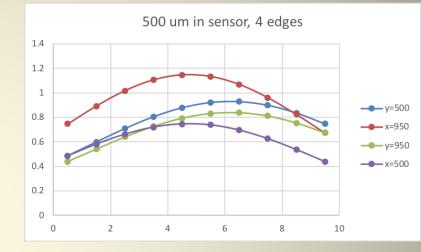
ECFA-DRM TF3, 23/4/2021

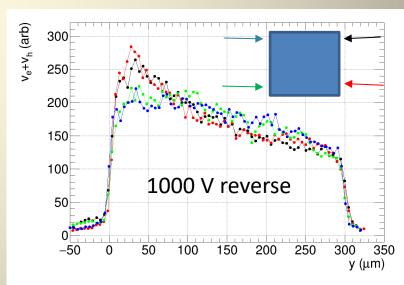

Marko Mikuž: Extreme Silicon

Proton irradiations - details

- Samples irradiated in PS in pairs
 - in series in same sample holder
- Same leakage current in both samples

⇒same *average* fluence received


- Beam profile asymmetric
 monitored by BPM2
- Which side did we pick up ?



Protons revisited

- BPM2 results for the 1e15 sample, 0.5 mm in sensor
- 10x10 mm² average to peak: 0.7
 Values rescaled
- Mid-side to average:
 - 1.17, 0.88, 0.82, 0.74
 - Must be the larger difference
 - Correct fluences by -10 %
 - Assign 20 % error
- Re-measured one sample from both sides, match with BPM2 data – still in progress

Looks like explaining the issue

lattice µ, (1450 cm² sec'V OBONI, Received PROPER CANALL, P 18 March 1976; in revised DONOR CONCENTRATION (cm³ Fig. 5. Electron mobility, µ, in silicon at 300 K as a function of 0 impurity concentration. Open and closed circles are the experimental results reported by Irvin[55] and of Mousty et al.[56]. respectively. The continuous line is the phenomenological best fit (eqn (6)) of Baccarani and Ostoia[53] the broken line the best fit (eqn (7)) of Hilsum[54] the dot-dashed line (eqn (8)) of Scharfetter

MOBILITY (cm

ELECTRON

200

100

. H. (N

low

Table 3. Best-fitting parameters for the impurity dependence of electron and hole Ohmic mobilities at room temperature, as given in eqn

	Electrons	Holes	Units
Hmin	92	47.7	cm2 V-1 sec-1
Hans	1360	495	cm2 V-1 sec-1
Net	1.3×1017	6.3 × 1016	cm-3
α	0.91	0.76	

- Dependence on *shallow* dopant concentration
 - Measured in the roaring 60's
- Characteristic trap concentration N~10¹⁷ cm⁻³
 - looks out of reach for typical $q=O(10^{-2})$
- But g refers to $N_{eff} = |N_a N_d|$
- While N is more like $N_a + N_d$
 - x-sections for deep and shallow?
- Power law looks compatible: $a \le 1$ ECFA-DRM TF3, 23/4/2021

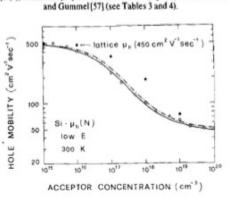
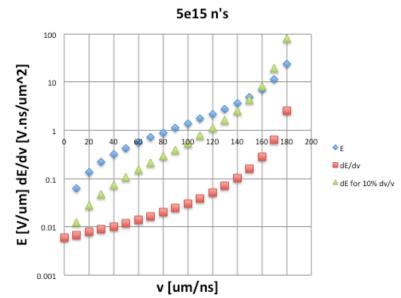
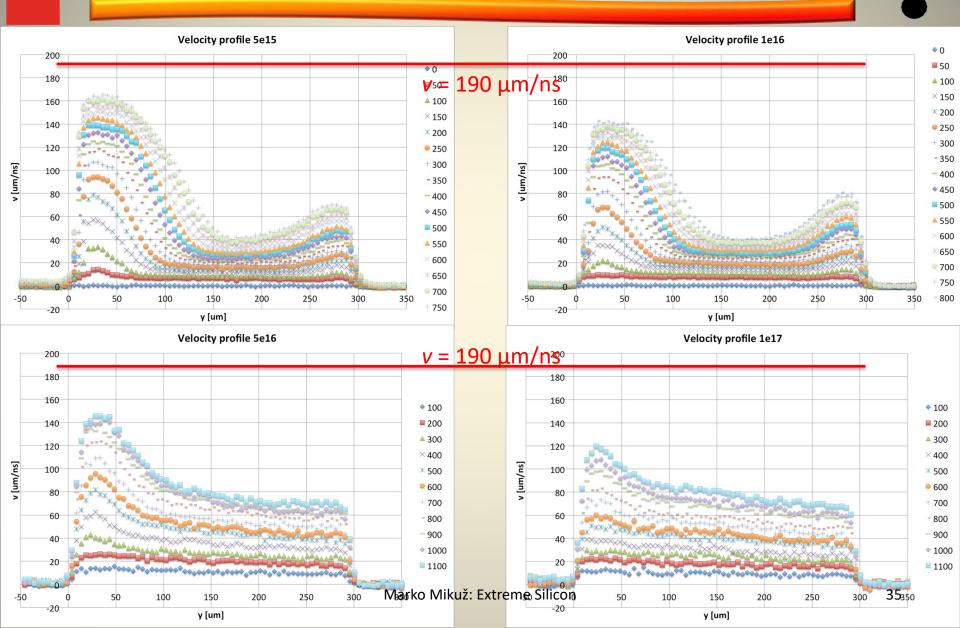


Fig. 6. Hole mobility, µh, in silicon at 300 K as a function of impurity concentration. Open circles are experimental results reported by Irvin[55]. Continuous and dot-dashed lines represent the best fitting curves of Caughey and Thomas [58] (eqn (6)) and of Scharfetter and Gummel[57] (eqn (8)), respectively (see Tables 3 and 4).

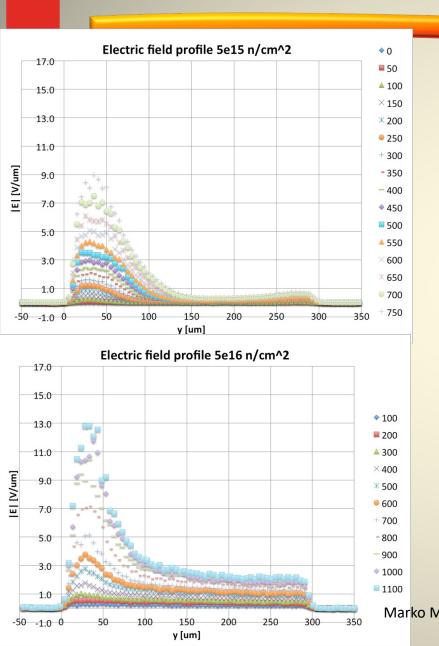
Istituto di Física dell'Università di Modena, 41100 Modena, Ital OTTAVIANI and ALBERIG

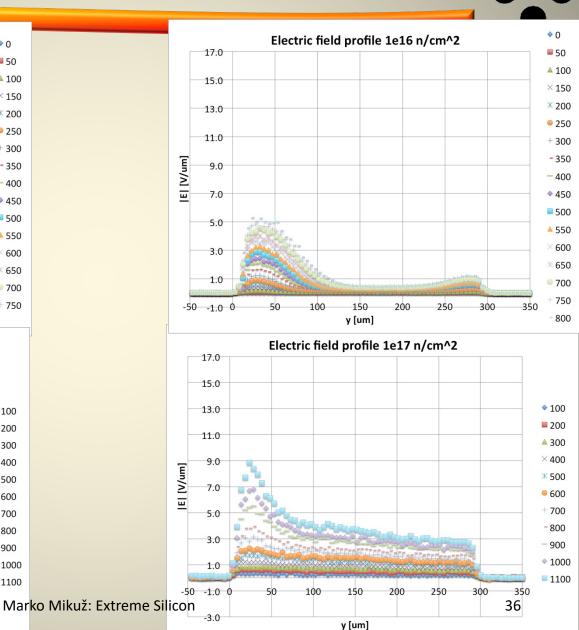

form 12 July 1976

33


NSPOR'I

Velocity and Field Profiles

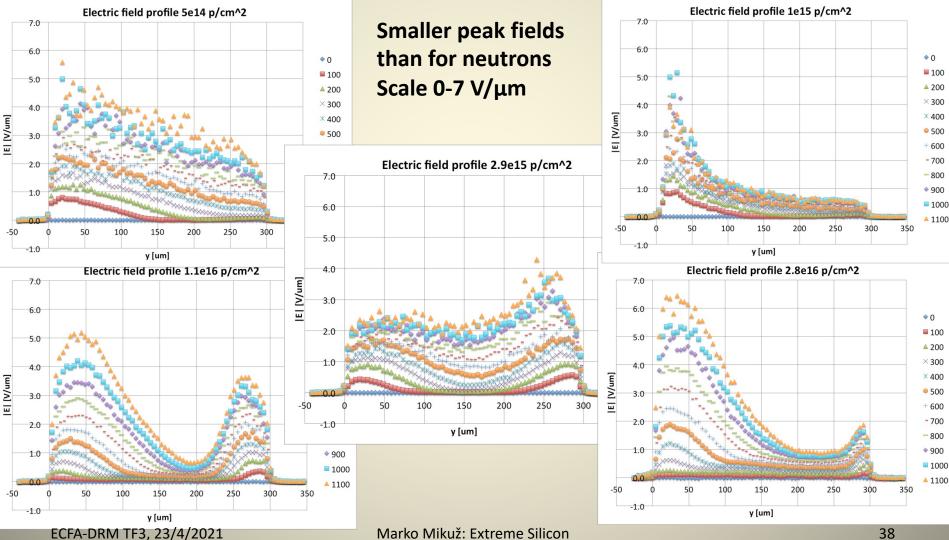

- Knowing v(E) can set scale to velocity profiles
 - assumption: same scale on FW and reverse bias
 - protons: for 5x10¹⁴ and 10¹⁵ use same scale, fixed by average field for 5x10¹⁴ at 1100 V (no good FW data)
- Invert *E(v)* to get electric field profiles
 - big errors when approaching v_{sat} i.e. at high E
 - exaggerated by CM in high field regions
 - v > v_{sat} not physical, but can be faked by CM



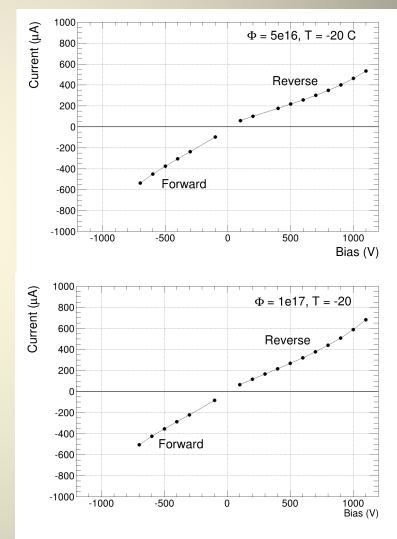
Velocity Profiles Neutrons



Field Profiles Neutrons



Velocity Profiles Protons



Field Profiles Protons

Current Characteristics

- Smooth behaviour in both directions
 - Highly resistive Si limits FW injection
- Reverse current smaller than predicted by an order of magnitude
- Both currents rising ~linear with bias
 - Slopes FW/reverse more compatible at higher fluences
- Consistent with recent measurements at highest fluences

Trapping Considerations

• Extrapolation from low fluence data with $\beta_{e,h}(-20^{\circ}\text{C})=4.4,5.8 \times 10^{-16} \text{ cm}^2/\text{ns}; 1/\tau = \beta \Phi$

Ф [1е15]	5	10	50	100	
τ [ps]	400	200	40	20	
<i>mfp@v_{sat}</i> [µm]	95	48	9.5	4.8	
MPV [e ₀]	7600	3800	760	380	
<i>MPV@</i> 1000 V	8900	5500	1800	1150	*
<i>CCD</i> _{1000 V} [µm]	110	70	23	14	

• Measured data exceeds (by far) linear extrapolation of trapping

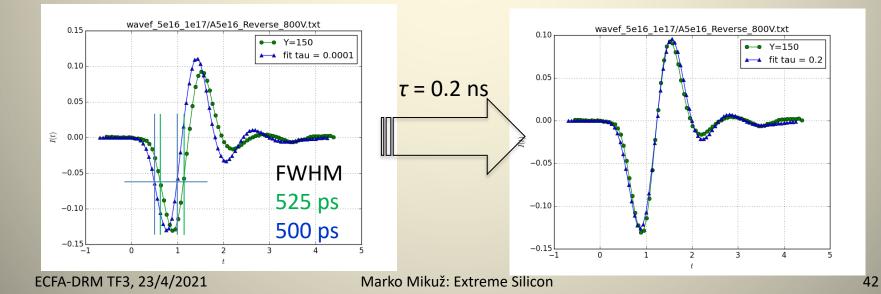
- n.b.1: *E*~3 V/μm by far not enough to saturate velocity

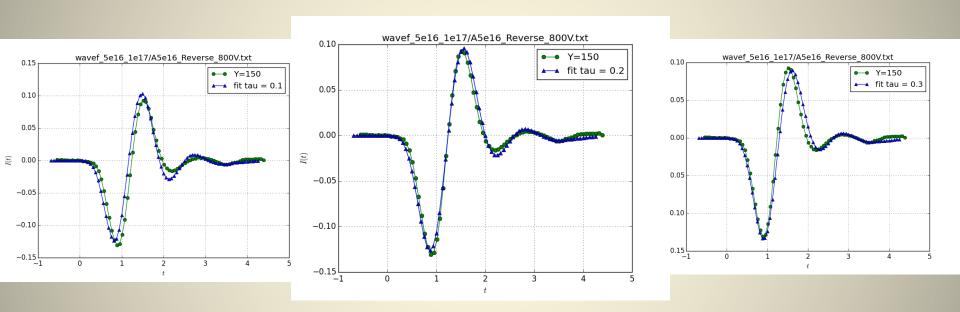
– n.b.2: little sign of CM at highest fluences


INST 9 P1001

More Considerations

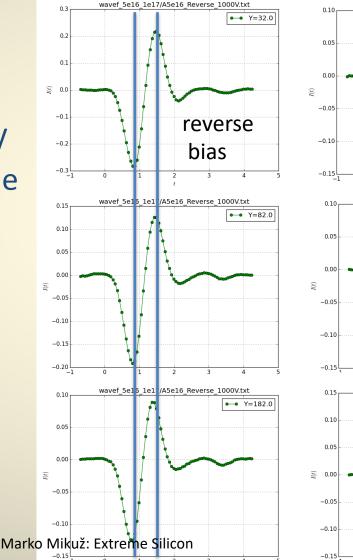
• More realistic: take v_{sum} at average $E = 3.3 \text{ V/}\mu\text{m}$

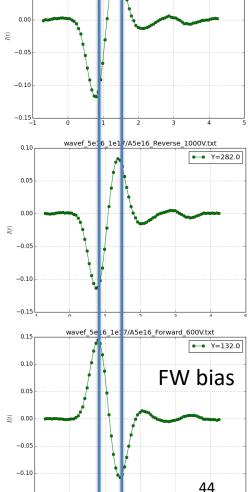

Ф [1е15]	5	10	50	100	Mobili y neutrons
<i>v_{sum}(3.3</i> V/μm)	137	126	90	77	rij umse kljego
<i>ССD</i> _{1000 V} [µm]	110	70	23	14	120 100 80 Non-irradiated(model)
<i>τ ≈ CCD/ν</i> [ps]	800	560	260	180	60 40 + 5e15 n/cm ² + 1e16 n/cm ² + 5e16 n/cm ²
τ _{ext} [ps]	400	200	40	20	20 + 1e17 n/cm ²


- Implies factor of 6-9 less trapping at highest fluences
 - lowest fluence still x2 from extrapolation
 - weak dependence on fluence as anticipated
 - CM would effectively shorten trapping times
 - not good when large E variations (v(E) saturates)
 - not good when CCD ≈ thickness (less signal at same τ)

Exploiting TCT Waveforms

- Waveforms at *y*=100 μm, 800 V, 5x10¹⁶ and 10¹⁷
 - E ≈ 3 V/µm, CCD/2 implies signal within ~10 µm or <0.2 ns
 - the rest you see is the transfer function of the system
- Still distinct signals from the two fluences
 - treat 10¹⁷ waveform as transfer function of the system
 - convolute with $e^{-t/\tau}$ to match 5x10¹⁶ response
 - $\tau = 0.2$ ns provides a good match
- In fact, measure $\sim \Delta \tau$, as "transfer" already convoluted with $e^{-t/\tau(1e17)}$!

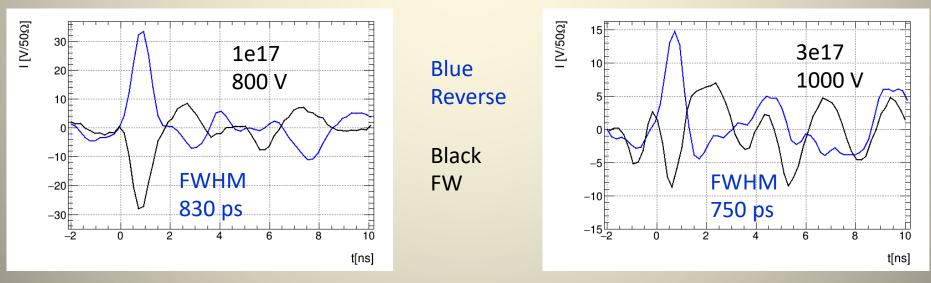



Waveforms: How sensitive ?

Δτ = 0.2 ns certainly best fit, 0.1 too narrow, 0.3 too broad
precision ~50 ps

Trapping – position dependence ?

- Waveforms plotted every 50 um in detector depth for reverse bias at 1000 V
- Forward bias in middle of detector added at 600 V
- Very little, if any, wf dependence on position observed
- Trapping not position (even not bias) dependent !?



wavef 5e16 1e17/A5e16 Reverse 1000V.txt

Y=232.0

Trapping @3e17

- Moved to another setup different waveforms
 - Widths of reverse and FW similar
 - With decreases 1->3e17
 - Irregular waveforms with small signal @3e17
 - Hard to state something more quantitative

ECFA-DRM TF3, 23/4/2021