A new gain layer design – Compensated LGAD

To increase radiation tolerance of the LGAD gain layer we concurrently implant p⁺ and n⁺ dopants in the gain layer volume

→ Use the interplay between acceptor and donor removal to keep a constant gain layer active doping concentration

Many unknown:

- ▷ donor removal coefficient, from $\mathbf{n}^+(\Phi) = \mathbf{n}^+(\mathbf{0}) \cdot \mathbf{e}^{-c_D \Phi}$
- interplay between donor and acceptor removal (c_D vs c_A)
- effects of substrate impurities on the removal coefficients
 - \rightarrow Necessary to study the donor removal at n⁺ densities of ~ 10¹⁶ atoms/cm³ and above (with and without oxygen)

Extras

Compensation in Real Life

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

→ The simulation of the electrostatic behaviour show that it is possible to reach similar multiplication for different initial concentrations of p⁺ and n⁺ dopants

Compensation – Doping Evolution with Φ

Three scenarios of net doping evolution with fluence are possible, according to the acceptor and donor removal interplay:

1. $\mathbf{c}_{\mathsf{A}} \sim \mathbf{c}_{\mathsf{D}}$

 $p^+ \& n^+$ difference will remain constant \Rightarrow unchanged gain with irradiation

 \rightarrow This is the best possible outcome

2. **c**_A > **c**_D

effective doping disappearance is slower than in the standard design

- \rightarrow Co-implantation of Carbon atoms mitigates the removal of p⁺-doping
- 3. **c**_A < **c**_D

n⁺-atoms removal is faster \Rightarrow increase of the gain with irradiation

 \rightarrow **Co-implantation of Oxygen** atoms might mitigate the removal of n⁺-doping

Donor Removal Characterisation

A p-in-n LGAD production batch is foreseen to study the donor removal coefficient, c_D Donor removal has been studied for doping densities of $10^{12} - 10^{14}$ atoms/cm³

We need to study donor removal in a range $10^{16} - 10^{18}$ atoms/cm³

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal

 \rightarrow The main goal of the p-in-n LGAD production is to study the $c_{\rm D}$ evolution and its interplay with Oxygen co-implantation