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Flavour anomalies
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Flavour anomalies
What do we mean by an anomaly?

Collins dictionary

m English: anomaly American: anomaly anomaly Example sentences COBUILD Collocations Trends

Definition of 'anomaly'

anomaly
Collins COBUILD

Word Frequency @ @@ ©

(anomali 49 @)

Word forms: plural anomalies 49

COUNTABLE NOUN

If something is an anomaly, it is different from what is usual or expected.

[formal]
The computer's software detected an anomaly caused by a virus. [

Synonyms: irregularity, departure, exception, abnormality More Synonyms of anomaly




" Flavour anomalies )
« Within the Standard Model framework, we can calculate the probability of a

decay or a differential kinematic distribution of daughters in a decay

o |f the measured distributions (within uncertainties)
are not in agreement with the calculated arXiv:2104.10058
ones, we have an anomaly =t

™\

: o SM calculation
« But what if nearly all (>100!) point in the same | Measurements

direction? Do we see signs of a new S
fundamental force, new vector bosons, ...??
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« So what! With loads of measurements
and predictions, some of them
are bound to be wrong?
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https://arxiv.org/abs/2104.10058

Flavour anomalies at LHCb

« The Large Hadron Collider is the Iargest producer in the World of b hadrons

— These are great for studying NNV
as they have O(10%) different RN\
decays that each give i A
information

— About 10" b-hadrons per
year

— LHC Run 3 that just started
will increase this rate by a
factor 5
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... and at Belle |l

« The Belle Il detector detect B* and B® mesons produced from Y(4S) decays

~ Simplicity of environment allows S —
for inclusive reconstruction s W e 2

- . - ':- :ﬂims.iWEWmllam}
— Capability to detect final states ~ ewcolorimesr
with multiple neutral particles
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Look for the rare

o |f a decay of a b-hadron is predicted as really rare within the Standard
Model, it is easier to spot an effect from something beyond the SM

/u zo A/IJ
. V ./ .
Not allowed in SM . i w- .\I\’\\A\H_ Allowed in SM
éYM’ E but suppressed
b QN S b " <o S
B~ K~ B~ K~
a /S ~ N\, @ a = a
+
./A/u
\4\
LQ/ e Some new force carrier
b o u- that allows same final state??
- _




Penguins
 The decays are call electroweak penguin decays




The first penguins
» CLEO found evidence of B—K*y with BF~5 x 10 in 1993

VOLUME 71, NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1993

Evidence for Penguin-Diagram Decays: First Observation of B — K"*(892)~
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Weak interaction of quarks
 Experimentally, charged pion and kaon decays can be compared

Vu

d
|
Y

A\
:%&

o

i

« Experiment shows that kaon lifetime is a factor 20 longer that naively
expected

« Cabibbo proposed that this was due to that weak eigenstates are
dn‘ferent to mass eigenstates

weak weak mass

— —
d’ d’ cos 6. sindO_||d
s’ —sinf@.cos .| |s

d:
S

cos O.—sin 0.
sin 6. cos 6.

e Sowehave d'a»w~ butnot s'a>w-
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Weak interaction of quarks

« Experimentally, charged pion and kaon decays can be compared
d Vu

3
N

Ei

N
=
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(T~ — 1 Vy,) o< |M|? o< cos? 0, (K~ — W~ V) o< |M|? =< sin” 0,
tan? 6, =~ 0.05

12/58



GIM mechanism

« Consider the decay of a neutral kaon to two muons

My =< gév cos O, s1in 6,

TR

sin6, W+

« Decay was not observed at predicted branching fraction

— Glashow, llliopoulos and Maiani (GIM) proposed a (at the time
hypothetical) 4" quark to explain this

« Quark couplings then become

77 i = -
COS QCM;II‘TWQ< d sin 9;2—%< S — Si];V;/:%/—“L2< d CcOS 66_",2/‘7WQ’< s
13/58



GIM mechanism

 So decay of neutral kaon to two muons now become
—sin6., W™

cosO., w+

M o< gév cos 6.s1in 6, M> o< —g%, cos B, sin 6,
|M|? = |M{ +M>|?> =~ 0

« Cancellation is not perfect as ¢ quark mass is large compared to the
other masses in the system

u u C C
cos 91/24\—%< 4 sin 9;—%< s — sir:,;?g\/—“i‘2< d  €os ;:%M_%< s
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Universality of weak coupling

« Comparing muon, pion and kaon decays initially made it look as if weak
coupling was different for different species

Vi _ _ _ _
g\/—“L u u C C
2
u——>—-{f, """4< ”""4< """4< """4<
cos 6. % 4 Sin6c g—\/“% s —sin6. % 4 cos6. —‘f/"% s

« Understanding Cabibbo effect shows us that the weak coupling is
universal, meaning the same for every vertex.

« Extending this to 3 dimensions gives us the CKM matrix
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GIM mechanism and penguin decays

u, c or t quark here

* *

VV. +V.V, +V.V. =0

us " ub cs ' ch

« GIM mechanism at first glance
predicts that all penguin diagrams
have zero amplitude when
summing over internal quark lines

« The VERY heavy top quark saves
the day for the b hadrons

« Charm hadron penguin decays are
extremely suppressed though

B ——
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An effective theory for describing decay

« As the W boson or any NP particle(s) are of a mass far above the b quark
mass, we can treat decay in an effective theory.

(4

_|_

A
A

BO K*O

d >

o This is the same idea as treating radioactive decay as a 4-fermion operator
in Fermi theory




An effective theory for describing decay
« The effective theory needs to describe the different types of coupling

4Gr

Hett = Ho — A

Vio Vr”s:.lgz? Z (C:'O;' + Cfof)
1

magnetic dipole operators

bp(1) \

L < TAViVAVA¥

SL(R) /

CY(80 1 Pryb) F*
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An effective theory for describing decay
« The effective theory needs to describe the different types of coupling

Hett = Hgfr;ﬂ - 4;/G§F Vrb 2 Z (C.'Or + Cf )

magnetic dipole operators semileptonic operators

bR \ by(r) \ / Ci(R)

¢ BN Cato
SL(R) / SuR) / \ {)-L{F:')
CY (5o Panyb) ", CY (89 Pumb)(E"0)

C) (5, Puyb) (T v50)
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An effective theory for describing decay
« The effective theory needs to describe the different types of coupling

Hert = He — 4\/G§F VioVis 76— Z (C.'Or + GO )
magnetic dipole operators semileptonic operators scalar operators
bR(L}\ by(r) \ / Ci(R) bﬁ'(!_}\ // CR(L)
¢ QN Calo
wn” 2 N N
G (B0 Payb)F* . CYGuPumb)(y0) . CS(EPawyb)(fPum!)

CY) (57, Pucayb) (T ~s0)
From Altmannshofer
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Looking for New Physics

« Within the language of the effective theory, the determination of Wilson
coefficients is how we can identify New Physics

« We then compare the measured values to the ones predicted from the
parameters of the SM

JHEPOQ9 (2022) 133

" SM calculation

Measurements
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https://doi.org/10.1007/JHEP09(2022)133

The need for high precision

o Plots are often made ) p >
showing deviation from SM
prediction

« We actually measure the A S
absolute value of the Wilson L
coefficients —r

B B. - oup

« High precision
measurements are required




But potential gains are large
« We can try to estimate the mass scale of new physics

* For a tree-level mediated NP effect, we are sensitive to )\2/M2 in B decays

2 4
2 =209%SM~20% L2 1
M m;, 16m (30TeV)
« Orina minimal flavour violating model (where structure is the same as
Higgs couplings to quarks)

k
2 th Vts ~

2 4
A —o09sM~209% 9L 1

M? m?, 167 (6TeV)?
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The B%—p*yu decay

« Conceptually the easiest of all these rare decays to look at

S

« Very precise prediction in the Standard Model
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The B%—p*yu decay

Event 146539692
Run 174933
Sat, 21 May 2016 05:45:41

pp
collision point




The B%—p*yu decay

« Very complex endeavour to identify a decay at the part-per-billion level
« Eventually fit can be made to mass distribution of the two muons

B
)
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https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-006/index.html

Topology of B —K*u*y

« The SM loop level diagram interferes

with tree level B—K*(cc) followed by

(cC) - U

. . i ] 2 2
* Gives multiple regions in g =m |

U

J/

Photon Q’D(QS)

pole

Broad
resonances




B —K*u*tu- angular analysis
Results based on data from 2011 — 2016 from LHCb
P, is a derived parameter from the angular distribution

This fit excludes the largest L0
resonance regions

Leaves it to subsequent

0.5

interpretation to deal with non-local of
effects :

LHCb, Phys. Rev. Lett. 125 (2020) 011802

—

L |

LHCb
sRun 12016
* Combined

[0 SM from DHMV 1



https://doi.org/10.1103/PhysRevLett.125.011802

QCD

« Any calculation that involves low-energy QCD effects has uncertainties that
are hard to quantify

« A hadron is not just a nice simple object

@ @ The Wikipedia view of a proton
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https://en.wikipedia.org/wiki/Proton

QCD

« Any calculation that involves low-energy QCD effects has uncertainties that
are hard to quantify

o Atenergy scales of A
calculations in QCD

¢ O
¢

oo ~ 300 MeV we can no longer use perturbative

More the reality s 1ok "o e Mgy A

L] . i
= B & 4
- .‘ & : l'.,. H
L L
LI BT e T e
E - L] - - &
. @ B & .
& a F & . -
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QCD

« Any calculation that involves low-energy QCD effects has uncertainties that
are hard to quantify

. Atenergy scales of A, ~ 300 MeV we can no longer use perturbative
calculations in QCD
— Confinement of the initial state hadron is non-perturbative
— The hadronisation process for final state (if hadronic) is non-perturbative
— The QCD vacuum is relevant

« Tools available such as Heavy Quark Effective Theory, Light Cone Sum
Rules and Lattice QCD provides some of the answers

31/58



Theory at lowest order

« Decay can't proceed through tree level, so loop level weak decay is lowest
order

— Physics at high energy scale gives

Wilson coefficients C., C,, C pt
jr

— Theory provides the form factors
that describe the hadornisation

into the K* b § < 3
« Combination gives prediction g0 ;0
of angular distribution that
can be compared to d > d

measurements




Observables

« So called “observables” were developed to | S
categorise the decay * |

o F., fraction of decay produced with a
longitudinally polarised K* seems to be the r
first 3

]
!
}

1
]
I

i
:
1

Volume 175, number 3 PHYSICS LETTERS B

1 4 5 i Y

RARE DECAYS OF THE B MESON ¥
Fig. 1. The distribution functions F(X) give the fraction of
PE:FEC‘E{ ‘I {}" D{:}NNELL i events for whick the pairs produced have a value smailer than
X. (Here X denotes the value of x in uniis of 2m,.) The
CERN, CH-1211 Geneva 23, Switzerlund fraction has beer calculated separately for the distinct decay

modes B—=K*u"s” anéd B Kpu'p™ X. If only o' p™ pairy

. ¢ are observed ihen Fy and F£; should be muiltiplied by

11 T L £ 3
BERE L AR 2ot o7 /(b1 + P12} a0d [py /(pr +py )} respectively.
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Optimised observables

o The observables were refined to minimise the effect of uncertainties in
form factors

o In particular the P’ observables have gained traction

I T 9 3 !
=__[Z(1 — F,)sin’0, + F,cos?8, + - (1 — F, )sin®f cos2d
dT/dq dcosbedcosbrdddq’ 32,—,—[4( LsinO + Freos Oy + 7 (1 = Fy)sin 0 cos20,

— F,cos’fy cos2@; + Sysin’fgsin®f, cos2¢d + 5, sin2f, sin2f, cosc

+ 85 sin2@g sinfy cosh + Sesin’ @y cosfly + S;sin20 sinfly sing

Optimizing the basis of B — K*¢¢~ observables in

+ Sgsin2@g sin26; sing + Sgsin’fgsin’ 0 sian_b:I,
the full kinematic range

I A j=4578
Sébastien Descotes-Genon,” Tobias Hurth,” Joaquim Matias® and Javier Virto® P

i=4568 : i
JF (1 — Fy)
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Measurement of observables

« All the angular observables
from the B'—K*u*u can
be translated into
constraints in the effective
theory

« But the translation from
experimental
measurements to Wilson
coefficients still depend on
our “estimates” of low
energy QCD effects.
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https://doi.org/10.1103/PhysRevLett.125.011802

Factorisable corrections

« Strong interactions to the spectator quark can be dealt with through
factorisation using Light Cone Sum Rule or Lattice QCD calculations

— Uncertainties are at the few percent
level and can be well estimated

cl cl




Non-factorisable corrections

« When the lepton system can no longer be regarded as isolated, the
theoretical framework is much weaker

— From looking at the size of this effect
in hadronic decays, an estimate of
O(10%) can be made

il f




Charm loop corrections

« The most hotly debated area at the moment
— How should experimental data be used?
— How can uncertainties be assessed? f
— Is O(10%) uncertainty reasonable?

C @DQ% i
b < < S

_|_
BO K*O
d > d




How to work around QCD limitations

o To be able to make firm statements about a signal of something new we
need to get beyond the current limitation from QCD uncertainties

« Several directions to follow
— Exploit that there is only one fundamental theory
— Extract the QCD effects using a data driven method
— Look for matter-antimatter difference (e.g. CP violation) in the decays
— Final states with neutrinos
— Compare final states where only the leptons differ
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Exploit that there is only one fundamental theory

« For a given 4-fermion coupling there should only be one type of New
Physics

Eur.Phys.J.C 81 (2021) 10, 952

2.0
By = pp 1o iy /

XlO_g LHCDb, PhyS Rev Lett. 127 (2021) 151801 —— Ry & Ri- 10,20 ’ﬂa\rm

L | T =] = b — spp 1o, 20

:U 14 — LHCb _I_ LHCb gfb_l 159 — rare B decays 1e,

' - - LHCb 3fb N

2 12 | SM (LCSR+Lattice)

< 10 ] SM (LCSR) =]

Sy FEEE SM (Lattice) :

E 8 F}-‘ - _5 S 05

T fle Iy oyes) 5

5‘ 6 ; R3%e

S 4 =t 0.0

S o 2 — + —

Q C ] ~0.5 1

ﬁ 0 | - [

= 0 5 10 15



https://doi.org/10.1103/PhysRevLett.127.151801
https://doi.org/10.1140/epjc/s10052-021-09725-1

Exploit that there is only one fundamental theory

* Any potential new physics should affect all regions in q2

— We can't have two different values of C9 , &, Descotes-Genon & P Stangl (UCLab & LAPTH

* We can fitthe B —K* 11 in bins
— (Good agreement between different regions

- Match between low g (LCSR) and high S0 T_
-

2

q (Lattice QCD) is encouraging
— Sensitivity of comparison still quite poor

'20 5 10 15 20

q*(GeV?)
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Extract the QCD effects using a data driven method

« With knowledge of the form factors, the branching fraction can tell about
the Wilson coefficients — here for B—K*pty-

drr  Gpa?|Vp V3|2 vl 22 2
i 128775 |k|p §| “B
dm? (m>% — m%)? 2
q-mp
1 mp + Mg 2
3 mp +mg

. The C, we measure has interference from vector resonances

Cgff _ CQ s Z T’Ijei(sj AI}CS(QZ)
J
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+ + . .
B —K p*u branching fraction
300 T ~ O————EPICT7 (2017). 161
& sk LHCb ' 3 < | LHCb
> T
b} (a2
p 2
N
£ I
— L
2]
= A=
< L
o I
B
g il emew ) 3 sy R 1y o3 ¢ 6-"""""'
& 1000 2000 3000 4000 0 2 4 6
mies [MeV/c?] Re(CY)

« Branching fraction is below SM expectation
— This is seen in all other electroweak penguin decays with muons
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http://dx.doi.org/10.1140/epjc/s10052-017-4703-2

Refine the data driven method

 Promising progress on work that utilise that scattering from initial to final
state is described by analytical function in the complex plane

— Leads to a dispersion relation that can be estimated from the theory side ...

q* [GeV?]
: 13 09 6 0 | | EPJ C?S (20}8), 451
".\ty 4 | 1 I I \ B SM prediction (prior)
C ' I SM prediction (prior) 0.8 ZZ1 NP fit (posterior LLH2)
ar ' SM fit (posterior LLH2) 8 B LHCD 2015
\(\,\ A 771 NP fit (posterior LLH2) 0.4

3t ~-"'\ B — K, ’

b ¢ P theory

TR =



https://doi.org/10.1140/epjc/s10052-018-5918-6

Refine the data driven method

Use expression of dispersion relation to parametrise B—»K*Opp (K*O—>K+rr')

* The full distribution depends on 6 complex q2 dependent amplitudes

A'!-;Ln(q ) — _8N Mg go= {k(‘q F C“-IJP (qz )]+ my

mpg + My

Ve

Ai(q
)=—N = (“ &

oo 2m
mH -|— T g

Cr rz:i(fiz) :!-g-ﬂ-(:};;}

------

------

R 1
6.}

23;3 ) ol
QEETQ(GJ ﬂgn(qz)i}




Modelling the hadronic contributions

’ i 932 5)
VA (2) = V(2 QD / 1s P
(q ) (QD)_'_ T as (‘;_q[})(q_q _1&_}

« Include ¢, p, J/y, w(2S), Y(3770), w(4040), W(4160), and DD states

pNq?) = piE" (@) + P5E (¢°)
— ZA* (B — K*tn V))o(¢® — m?)+

[1 ; dpz d%pz —
"'Z/ 16p25(q - ;) Enl JE];AA(‘I{J%r M Mig)6* (pi — pian — pi2)

« Leadsto a (large) set of free parameters that we can simply fit for in data
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Fit anomalies and QCD simultaneously

0 0 + -
* Use expression of dispersion relation to parametrise B—K* pu (K* —K 1)

— An unbinned analysis in ‘]
the dimuon mass - w - \ . . |

— In total we have around 140
parameters

— This is still work in progress

— Parameters in fit model are
blinded

Candidates / 0.1GeVZ%e ¢

Pu
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Look for matter-antimatter differences

« QCD treat matter and antimatter identically — no CP violation
— An observation of CP violation would indicate new physics amplitudes

— To observe it requires interference with SM amplitudes of different
phaSG N _ lJI—fEPI 09 (2|01z|1) 1.77_

< - | LHCb .
0.2F =

LT

— Unfortunately existing measurement og— — 3 ——
exactly avoids regions where we oj T ¥ Fﬁ J(Tﬁ
will have phase difference 02f +

Y] S
q? [GeV?¥/c*]
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https://doi.org/10.1007/JHEP09(2014)177

Look for matter-antimatter differences
« QCD treat matter and antimatter identically — no CP violation
— An observation of CP violation would indicate new physics amplitudes

— To observe it requires interference with SM amplitudes of different
phase

— Combining unbinned fit with CP
violation analysis will allow for this



https://doi.org/10.1140/epjc/s10052-018-5937-3

Final states with neutrinos

« We can investigate decays with neutrinos, rather than charged leptons in
final state

— SM calculation is almost identical for differential decay rate, but no cc loops!

— Final state B—Kvv impossible at hadron collider, but can be accessed at
Belle |l

— Method still sets limit a factor 10 above
SM prediction




Slide from Sallv Stefkova ....

Search for Bt — Ktvi | PRL 127, 181802 (2021) |
With only 1/10 £ new inclusive tag exploits very distinct signal kinematics: —— \

> 1. Reconstruct signal: highest-pr track in the event with at least 1 PXD hit (esig = 78%) > Y a*.

2. Reconstruct remaining tracks and clusters in the event

v

v

Minimise the background contamination with two nested BDTs
(variables: event topology, missing energy, vertex separation, signal kinematics)

v

20 x higher signal efficiency (esi; = 4.3%) wrt exclusive reconstruction but also higher background
contamination

- Validation with control channel: Bt — J/v(— ptpu™)KT

B{—z’Kw}B BB

W

2000 - /’A,%
Belle 11 Signal proxy i
\ Bacquound proxy fﬁ dt = G3fh—" 1. remove dimuon %“t %
200 2. mimic 3-body 10- 2t —
1500 - kinematics g ——
- = T [ T .
¢ ? 150 | Bel]? I Z 3 Neutral B
.3. P 100 II'. asl =3 Charged 13;
= g g M \ g = : — :
#1000 - & ° v z :- =
E Signal 3 Sal . -
Z 00 02 04 0.6 08 1.0 ] b 0 B ke
BT, (BDT, =0.9) g ¢ Expd Runidl2a
500 /OB =K I/, MC & BY=K*J/y, - Data| - §2 i :
LB =K ey MC ¢ BT KL Uy, Data
BY =K i MC _._,—'—'
0 . : : At 04 06 08 1.0
0.0 0.2 0.4 0.6 0.8 1.0 .
BDT, sphericity

DESY. | S.Stefkova | Lepton-Photon 2021, 11™ January 2022 Page 12




Final states where only the leptons differ
« Lepton universality is one of the key features of the Standard Model

« The only difference for decays with electrons, muons and taus is from their
mass

— Effect of this is easy to correct for in predictions
— Discovery of lepton flavour non-universality is a key signature of New Physics

« Some serious drawbacks though

— The experimental measurements of electrons, muons and taus is anything but
universal

— The measurements are only sensitive to effects that are not lepton universal
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Electron identification is hard

o Electrons are very light

— When they pass through material they
emit bremsstrahlung Magnet

« Curvature in magnetic field will
measure too low momentum

— Photons can convert and fake Gisgfrean [
electrons brem =5 brem

— Background from 11° - yy decay
that can fake electrons

« Bremsstrahlung recovery can
(partially) fix this

53/58
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B —K ury vs B—K'ete
« The dependence on the efficiency of reconstructing electrons can be
reduced through double ratio

B(BT - Ktutpu™) / B(BT — Ktete™)

B = BB = K oG )/ BB = KrJju(ere))

N(B+ — K+p+,u-_) « EB+—K+J/Y(putp)
N(B+ — K+J/d)(,u-+,(£-_)) EB+K+putpu—

N(B+ —>K+J/¢(€+€_)) > EBt s Ktete
N(B*T — Ktete™) EB+K+J/y(ete)

« J/y decay proceed through virtual photon which is measured to be lepton-
universal at 0.4% level

54/58
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B —K 'y vs B—K'ete

 Reconstructed peaks in the electron and muon modes

Electrons 150 Muons
LHCb — LHCb
& 100 —4— Data < 300 —4 Data
N — Total fit 7 250 — Total fit
§ 80 ....... Total RK - ] E """" T(Jtal RK = ]
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Many measurements of lepton non-universality

. Many of the measurements |
shows that that the muon final >
states are less common thanthe | """ -
electron OneS A’i*“ 0.045 < ¢* < 1.1 —_—— B

o Several measurements are g omegias e
above 20 below the SM e
expectation ]

« We need more data AND other |« =-#= -~
experiments (Belle Il) to do this |+ »=o0 —— ¢ Babar

Ry, : Measurement/SM Prediction
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Many measurements of lepton non-universality
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— ACDMN
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CFFPSV
« Combine all lepton non-
universality measurements with
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o All theoretical groups prefer a el
non-SM solution by around 30
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Conclusion
With enough data, we WILL be able to distinguish New Physics from QCD
LHCDb upgrade | (2022-31?) and Upgrade Il (2034?-) will form big part of this
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