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Introduction. At the Aerospace Centre of Excellence (ACE), a system to sup-
port operators in Space Traffic Management (STM) tasks is being developed:
CASSANDRA, Computational Agent for Space Surveillance and Debris Remedi-
ation Automation[1]. One of its functionalities is the Intelligent Decision Support
System module (IDSS), which performs close encounter risk assessment and pro-
vides robust decision-making support to operators, [2, 3]. At CNES operational
centre, the follow-up of an encounter risk assessment is performed by the ana-
lysts using JAC software[4] after receiving a sequence of CDMs. This system is
currently in operation and tested in several real-case scenarios.

In this work, we propose a new capability of CASSANDRA’s decision-making
process to handle a series of CDMs associated with encounter events, as done in
CNES operational centre. CDMs are the standard to share information about a
space encounter. A comparison between CASSANDRA’s and CNES’s decision-
making systems is made over some virtual and real scenarios.

CASSANDRA approach. CASSANDRA’s approach is based on Dempster-
Shafer’s theory of evidence (DSt)[5], allowing modelling both epistemic and
aleatory uncertainty, data fused information from different sources, and pro-
viding robust decisions. The IDSS system performs the decision-making using a
classification criterion that considers the proximity of the event, the confidence
in the correctness of the PoC value, and the Degree of Uncertainty affecting the
available information[2]. In order to use the DSt approach, the information has
to be provided as sets of intervals for the uncertain variables. When considering
CDMs, the information included on them only accounts for aleatory uncertainty
and the information is single-valued.

The novelty of this work is in the inclusion of sequences of CDMs as inputs.
From CDMs, we can extract the uncertain variables used by the IDSS (miss
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distance and covariance matrix components in the impact plane) and compute
the empirical Cumulative Distribution Function (eCDF). According to Dvoret-
zky–Kiefer–Wolfowitz (DWT) inequality [6], it is possible to define the region
within the actual Cumulative Distribution Function (CDF) will be located with
(1-ε)% confidence. With the resulting set of curves, similar to the p-boxes used
in probability theory[7], it is possible to define the intervals of the variable by
executing a number of α cuts along the vertical axis, so the intersections with the
DWT bands define the bounds of the intervals (see Figure 1a). Once obtained
the intervals, the IDSS decision-making approach can be executed as usual.

CNES approach. On the other hand, CNES decision-making process is based
on the concept of Scaled PoC, sPoC[8]. Acknowledging that the information
contained in the CDM can be affected by further uncertainty, the objects’ co-
variance matrices are scaled by multiplying them by the factors kp ∈ [kp, kp] and

ks ∈ [ks, ks]. The sPoC is defined as: sPoC = maxkp,ks(PoC).
In order not to overestimate the sPoC, the range for kp and ks is shrunk so

that the level of realism, α, of the Kolmogorov–Smirnov distance between the
empirical distribution function and the (assumed) theoretical 3DoF ξ2 distribu-
tion of the Mahalanobis distance between the previous uncertain ellipses and
the reference one (i.e. the most recent information on uncertainty) is above the
selected realistic limit) [9].

Then, the operator bases the final decision on the highest sPoC, the proximity
of the event, and the minimum miss distance.

Study cases. We propose to compare both decision-making processes in a
number of cases, both virtual, with a known outcome (collision or on collision),
and real cases provided by CNES.

(a) (b)

Fig. 1: (a) CASANDRA approach: (purple) DWT bands and (red) α cut at 0.5.
(b) CNES approach: Theoretical vs empirical Mahalanobis distance distribution,
and kp range of values for above the realistic level (green).
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