Apparent colours as manufacturing markers for GEO satellites

Alessandra Di Cecco¹, Alberto Buzzoni², <u>Maddalena Mochi</u>³, Giuseppe Altavilla^{4,5}, Sara Brambilla⁶, Marco Castronuovo¹, Fiore De Luise⁷, Silvia Galleti², José Guichard⁸, Cosimo Marzo¹, Gaetano Valentini⁷

- (1) ASI, Italian Space Agency, via del Politecnico snc, Rome, IT
- (2) INAF-OAS, via Gobetti 93/3, Bologna, IT (3) Università degli Studi di Pisa, Largo Pontecorvo, Pisa, IT
- (4) SDC-ASI, via del Politecnico snc, Rome, IT
- (7) INAF-OAAB, via Mentore Maggini snc, Teramo, IT
- (5) INAF-OAR, Via Frascati 33, Monte Porzio Catone (RM), IT (6) Aero Club Monte Comizzolo, Via San Miro 10, Suello (LC), IT
- (8) INAOE, L.E. Erro 1, Tonantzintla, Puebla, 72840 (México)

Introduction

Space debris pose a significant risk for operational satellites, astronauts and new launches, as well as hazard linked to uncontrolled re-entry in the Earth's atmosphere.

The observational and tracking activities of space debris are currently on-going worldwide. Among different techniques used to characterize these objects, multiband photometry is a powerful tool to investigate their physical parameters (surface materials, shape, etc).

We present the analysis of photometric 23 geostationary satellites, acquired using three optical telescopes; telescopes are located in Italy (belonging to the National Istitute for Astrophysics, INAF) and one in Cananea, Mexico (INAOE).

Observational strategy

- with The telescopes are equipped Johnson – Cousins filter sets,
- 30 to 60 frames per object, alternating the filter sequence,
- 60 sec exposure time,
- instrumental Acquired calibration frames and Landolt stellar fields for standard calibration.

Observation sites

Cassini-Loiano Telescope Teramo Normale Telescope Guillermo Haro Astrophysical Observatory

Data analysis

Step 1. Lightcurve reconstruction

We reconstructed the lightcurves for each GEO satellite in our sample (Fig.1). Moreover, we reconstructed the color-lightcurves by calculating the difference between two consecutive frames, and we estimated the mean color-index as the average value of the color-lightcurve.

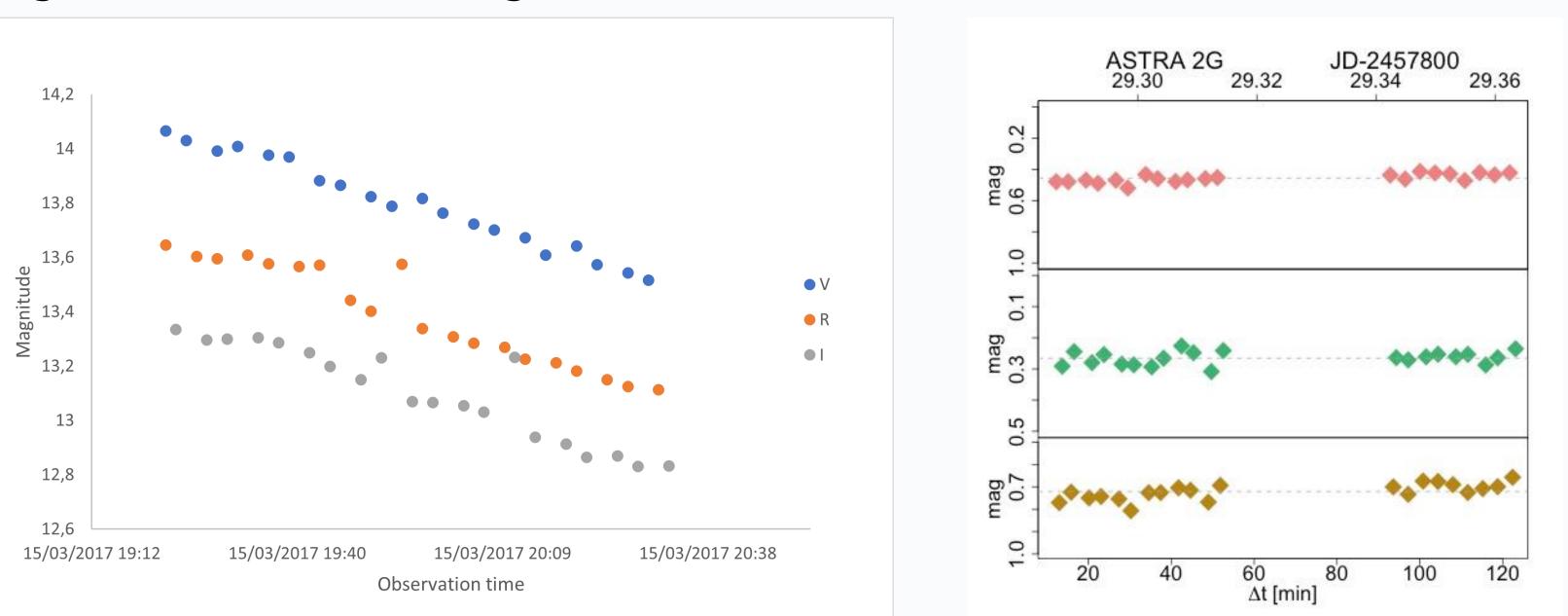


Fig. 1. Lightcurves (left) and color-lightcurves (right) obtained for the ASTRA 2F and ASTRA 2G GEO satellites.

Step 2. Color-color planes

The obtained values were investigated through color-color planes (Fig. 2), where a search for possible correlations with the structural features (retrieved from the web) of the bus and model of each satellite is underway.

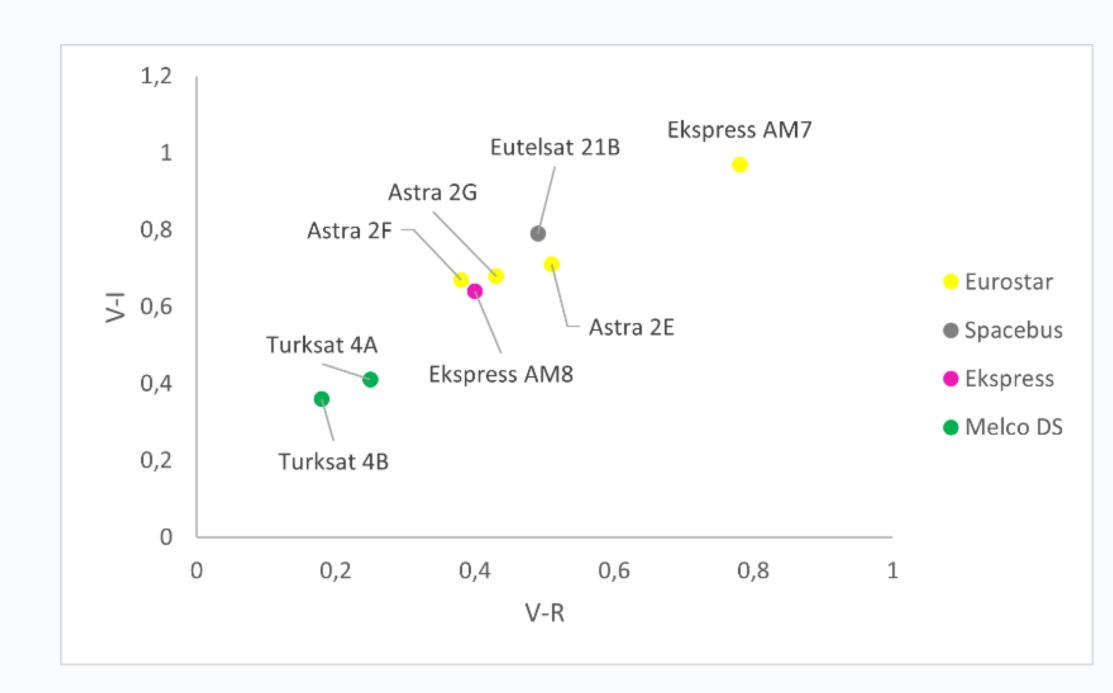


Fig. 2. Representation of a subset of our sample on the V-I vs V-R color color plane, tagged with the satellites' names and colored according to their bus families.

Name	Bus & Model	Launch date
Astra 2E	Eurostar 3000	30/09/13
Astra 2F	Eurostar 3000	28/09/12
Astra 2G	Eurostar 3000	27/12/14
Eutelsat 21B	Spacebus 4000C3	10/11/12
Ekspress AM7	Eurostar 3000	18/03/15
Ekspress AM8	Ekspress 1000NTB	14/09/15
Turksat 4A	Mitsubishi Melco DS-2000	14/02/14
Turksat 4B	Mitsubishi Melco DS-2000	16/10/15
Anik F1R	Eurostar 3000S	08/09/05
Anik F1	Hughes HS-702	21/11/00
Anik G1	Loral SSL-1300	15/04/13
Mexsat 3	GeoStar 2.4	19/12/12
Astra 1H	Hughes HS-601HP	18/06/99
Astra 1KR	Lockheed Martin A2100AXS	20/04/06
Astra 1L	Lockheed Martin A2100AXS	04/05/07
Astra 1M	Eurostar 3000	05/11/08
Hispasat 1C	Spacebus 3000B2	03/02/00
Hispasat 1D	Spacebus 3000B2	18/09/02
Spainsat	Loral SSL-1300	11/03/06
Eutelsat 13A	Spacebus 3000B3	21/08/02
Eutelsat 13B	Eurostar 3000	04/08/06
Eutelsat 13C	Eurostar 3000	20/12/08
Meteosat 8	Alcatel spin stabilized	28/08/02

Conclusions

 Hints of a possible correlation between some of the considered features (i.e. bus, model, etc.) and photometric colors (V-I, V-R).

References

- Cowardin, H. et al. 2010, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 14-17, 2010, Ed.: S. Ryan, The Maui Economic Development Board.
- Schmitt, H. R., 2020, Advances in Space Research 65, 326–336.
- Schildknecht, T. et al. 2008, Proceedings of the International Astronautical Congress, A6.1.4, Glasgow, Scotland, Great Britain, 29 Sep-3 October.