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Gravity field modeling is a problem of key importance for small-body explo-
ration. Due to the irregular geometries and unknown density profiles of objects
like asteroids and comets, the gravitational fields produced by these bodies can
yield highly non-keplerian spacecraft motion. As such, dynamicists require mod-
els which can accurate characterize these fields to ensure that spacecraft remain
on safe and fuel efficient trajectories.

Among the set of current gravity models, one of the most widely used is the
spherical harmonic gravity model (Kaula, 1966). This model is a particularly
convenient way to represent the gravity fields of large celestial bodies like the
Earth and the Moon due to its efficient modeling of planetary oblateness. In small
body settings however, the model grows considerably less reliable — diverging
within the Brillouin sphere and requiring many terms to capture discontinuity
and irregular geometries (Werner and Scheeres, 1997; Martin and Schaub, 2022).
Alternative gravity models exist which aim to avoid these problems including the
polyhedral model and the mascon model (Werner and Scheeres, 1997; Wittick
and Russell, 2018; Muller and Sjogren, 1968). These models avoid the diverging
numerics of the spherical harmonic model within the bounding sphere, how-
ever they come with their own unique caveats. The polyhedral gravity model
makes assumptions about the density profile of the body, and it is particularly
expensive to evaluate when leveraging high-fidelity shape models. The mascon
representation can avoid the computational overhead of the polyhedral model,
but it becomes less accurate near the surface of a body where the discrete nature
of the mascons grows more apparent (Tardivel, 2016).

These caveats are becoming increasingly difficult to ignore. With spacecraft
like OSIRIS-REx, Rosetta, and Hayabusa2 attempting landing or touch-and-go
manuevers, the need for models that are efficient and accurate across all oper-
ational domains is paramount. This pressure has fueled the development of a
second generation of small-body gravity models which shift attention away from
analytic models and towards learned solutions. In particular, machine learning
has demonstrated the ability to bypass many of the challenges facing past grav-
ity models. By using tools like extreme learning machines, gaussian processes,
and neural networks, dynamicists are able to learn efficient bases rather than
prescribing them analytically (Furfaro et al., 2020; Gao and Liao, 2019; Cheng,
Wang, and Jiang, 2019). This simple change can yield computationally efficient
and accurate gravity models without assumptions or operational no-fly zones.

While learned gravity models provide a compelling solution to the problems
plaguing their analytic counterparts, work remains to bring these models into
the mainstream. There exist relatively large gaps in the literature which fail
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Fig. 1. Physics Informed Neural Network Gravity Model Generation 11T (PINN-GM-
III)

to carefully investigate how these models can be designed to ensure robustness
across a wide variety of settings. For example, are there ways in which researchers
can ensure that the gravity model learned will satisfy relevant physics? How
might a model be designed to minimize the effect of extrapolation error beyond
the bounds of the training data? How do these models respond to error in the
training data, or amount of training data? How can these models be leveraged
in other facets of astrodynamics like orbit determination or trajectory design?
These questions require answers before these models can be deployed.

This presentation aims to address many of these questions through the intro-
duction of the latest generation of the Physics-Informed Neural Network Gravity
Model (PINN-GM-III). The PINN-GM differs from the other learned gravity
models due to its physics-informed loss function. By augmenting the traditional
network loss with differential physics constraints (Laplace’s Equation, conser-
vative vector field properties, relationships between scalar potentials and accel-
erations, etc.), the PINN-GM enforces that the model it learns is intrinsically
compliant with the underlying differential equations of the system (Martin and
Schaub, 2022). This provides significant benefits in model accuracy, compact-
ness, robustness to erroneous training data, and more — all the while retraining
computational efficiency.

Over the past two years, considerable effort has been put forth to carefully
design, implement, and characterize this new gravity model in a variety of as-
trodynamics settings and problems. This presentation will summarize this work
and will introduce various use cases of the PINN-GM within the fields of rein-
forcement learning, orbit discovery, and estimation.
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