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Monte Carlo (MC) methods are the traditional choice for uncertainty prop-
agation in astrodynamics, where a large number of samples from a Probability
Density Function (PDF) are propagated individually to analyse the evolution
of the PDF with time. One of the fundamental limitations of these methods,
however, is their computational time which typically scales poorly as the size of
the sample set increases.

Polynomial Algebra Monte Carlo (PAMC) is a method which propagates
the entire set at once to yield improvements in computational performance.
Under this method, discrete sets of states are represented instead with continuous
polynomials. Mathematical operators, such as addition and multiplication, are
defined for this polynomials, enabling calculations with entire sets of states.
Following propagation of the states in polynomial form, the polynomials are
sampled to recover the discrete propagated states. More advanced operations,
such as trigonometric functions, can be implemented in two main ways: either
through their Taylor expansions, or through a Chebyshev interpolation. This
results in two implementations, either Taylor-based or Chebyshev-based [1].

Concurrently, further improvements in computational performance can be
made by using alternative state formulations. Generalised Equinoctial Orbital
Elements (GEqOEs) are an alternative state formulation, proposed by Baú,
Hernando-Ayuso, and Bombardelli [2], which are an improved version of classical
Equinoctial Orbital Elements (EqOEs). By embedding the perturbing potential
into the definition of the elements, their performance is improved through more
linear orbital propagation, even when under the influence of perturbations. This
was demonstrated through linear methods, using the State Transition Matrix
(STM), which showed that covariance realism was preserved for a longer period
when using GEqOEs [3].

It has been shown that GEqOE-based PAMC can be implemented to take
advantage of the formulation’s more linear evolution with time [4, 5]. Compared
to a PAMC implementation with Cowell’s method, this resulted in a tenfold re-
duction in the number of integration steps required for a given solution accuracy,
and an up to 80% reduction in computational time. However, until now this has
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been limited to a Taylor-based implementation. It has been shown previously
that improvements in solution accuracy are available by using a Chebyshev-
based implementation, for a small increase in computational overhead [6–8].

In this presentation, a Chebyshev-based implementation for set propagation
with PAMC will be presented, with both Cowell’s method and GEqOEs, and
compared with the equivalent Taylor-base implementation. It will be demon-
strated that the Chebyshev-based implementation has a slightly higher compu-
tational overhead, however with the advantage of a more consistent accuracy-
performance trade-off, for both Keplerian and perturbed orbit cases.
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