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1 Introduction

Spectroscopy and spectral analysis have been shown in many previous studies to
be useful for characterising and distinguishing satellites and space objects based
on their spectral signatures [1–7], which are themselves characterised by the con-
stituent materials as well as the lighting conditions. Previous work, however, has
been mainly geared towards differentiating objects based purely on the spectrum
[1, 5], or inferring the presence of certain materials from characteristic spectral
peaks and troughs [1]. Previous works have generally considered only presence,
and not abundance, of individual materials. Time-varying spectral signatures
due to object rotation have been investigated [8], however most works do not
consider such short duration fluctuations in the signal.

This work applies various machine learning (ML) methods to extract infor-
mation from simulated hyperspectral time-series data, yielding information on
the proportions of underlying materials and their evolution over time as the ob-
ject rotates. This in turn is used to infer the presence of large components such
as solar panels and antennas, and finally perform a classification of the targeted
satellite. Applications of these techniques include reidentification of lost satel-
lites, characterisation of unknown satellites, or characterisation of medium-large
sized space debris.

2 Simulation Model

In order to produce sufficient quantities of training data for the ML models in
later sections, physics and sensor simulations were developed to simulate hyper-
spectral sensor outputs. This simulation model takes as its input a low-polygon
3D model approximation of a given satellite (examples seen in Figure 1(a)) as
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well as an initial orbit and rotation state vector. The trajectory and rotational
kinematics are propagated according to the respective physical laws for some
finite observation period.

Fig. 1: (a) Example 3D representation of a Starlink satellite. Colours represent
different ’regions’ which are characterised by particular combinations of materi-
als.
(b) Example simulated sensor output showing photon counts per band over time.

At each timestep, the light reflected from the object and collected by the
receiver, in each sensor band, is calculated according to the Lambertian model
of reflectance, accounting for time-varying occlusion and illumination conditions.
Surface materials are modelled by using reflectance spectra R(λ) corresponding
to the underlying materials of each element in the 3D model. An example sensor
output can be seen in Figure 1(b).

3 Data Processing Pipeline

The developed data processing pipeline is illustrated in Figure 2. The sensor
data is first expressed in a format akin to colour indexing [5], which expresses
intensity as relative to some reference band. This normalises for effects such
as distance, which vary case-to-case, and enables learned relationships between
band intensities to transfer to different physical configurations of the observer-
satellite system.

The sensor data is then fed to an artificial neural network (ANN) which
predicts the fraction of received light which is due to each present material
at each time point. This model was trained on the ground truth output from
the data generation simulation. The output of this model is a set of curves
describing the abundance of each material over the observation arc. These are
then converted into a set of 99 statistical features (mean, standard deviation,
correlation coefficients, etc.) which are used as the inputs for the next model in
the pipeline.
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Fig. 2: Example simulated sensor output showing photon counts per band over
time.

Following the ANN and feature extraction, a gradient boosted decision tree
ensemble model (XGBoost) was used to predict the presence, or lack, of 5 large
satellite components: solar arrays, antennas, thermal blankets, engine bells and
optical baffles. Since all used 3D models were based on real satellites, a truth
table could be constructed to use for training of this model.

Finally, the binary component vector output of the XGBoost model was
passed to a k-Nearest Neighbours (kNN) algorithm to perform the final classifi-
cation into the following classes:

– GNSS
– Earth Observation
– Communications
– Rocket Bodies
– CubeSats

Truth values for the final classification come from the nature of the underlying
satellite - for example, DubaiSat is an Earth Observation satellite, Starlink is a
comms satellite, etc.

4 Results and Generalisation

The material curve extraction model developed performs extremely well, and
was able to recover the material abundances for objects composed of up to 9
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materials (larger material libraries have not yet been tested). An example of
these curves can be seen in Figure 3.

Fig. 3: Example of ANN material curve predictions compared with simulation
ground truth.

The component detection model also performed very well, with low error
rates as seen in Table 1.

Solar Panel Engine Bell Antenna Optics TPCB
1.0% 0.3% 2.6% 1.2% 2.0%

Table 1: Error rates for the component detection model.

To assess the performance of the component detection model on unseen satel-
lites, the model was retrained multiple times, with each instance’s training set
having one satellite geometry excluded. The excluded class in each case was
then used for testing. The error rates for each of these retrained models can be
seen in Figure 4. It can be seen that the approach used for component detection
generalises fairly well to unseen satellites, with the possible exception of optical
baffles, which suffer a high error rate when certain satellites are excluded. This
is perhaps due to the nature of the material being detected, black paint, which
has a very flat reflectance curve of overall low magnitude, meaning there is little
to detect insofar as spectral features.

When classifying with kNN based on the 5 listed compoents, the classes are
not perfectly separable. However, there is only one case of overlap: Iridium-
NEXT, a communications satellite, has a set of components which cause mis-
classification as GNSS even when components are correctly predicted. When
training the XGB model on data from all satellites, this is the limiting factor
in accuracy: with the exception of Iridium-NEXT, all satellites were correctly
classified with over 99% accuracy.
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Fig. 4: Error rates for the 13 retrained XGB models, each time excluding and
testing on one satellite type.

5 Summary

This work contributes a significant advancement in characterisation of space ob-
jects based on their reflectance spectra, and showed that significantly more de-
tailed information may be extracted from time-varying spectral signatures than
has previously been achieved. An ANN was used to extract the time-varying con-
tribution of each underlying material on a rotating, orbiting object from ground.
This information was then processed into a new set of features, before being fed
to another ML model which predicts the presence of large, characteristic satel-
lite components based on the underlying materials. This model was shown to be
reasonably robust to satellites that were not included in the training set, how-
ever expanding the range of satellites in the training set would likely improve
this model’s generalisation further. Finally, an initial classification system based
on kNN clustering of the component vectors was proposed. Although the classes
were not perfectly separable, the separation was only violated by one specific
satellite instance, and again, expanding the range of satellites used to produce
training data may improve the kNN classification step.
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