Supersymmetry in the adjoint representation of the conformal superalgebra
 (aka "Unconventional Supersymmetry")

Pedro Alvarez
Universidad de Antofagasta, Chile

International conference ON HICH ENERCY PHYSICS HEP2O23

Punchline $1 / 2$

- We study a general recipe to implement models for gravity, gauge theories and matter using the adjoint reresentation of the superconformal algebra

$\operatorname{SU}(2,2 \mid N)$

\rightarrow Fermion/boson matching of d.o.f. is not mandatory.
\rightarrow Standard gauge kinetic terms are included.
\rightarrow Models are highly predictive, very few free parameters in the action.
\rightarrow Also included: fermion quartic terms, torsion coupling.

Punchline $2 / 2$

- We constructed a GUT based on

$$
S U(2,2 \mid 5)_{\mathrm{diag}}=[S U(2,2 \mid 5) \times S U(2,2 \mid 10)]_{\mathrm{diag}}
$$

That embeds the SU(5) Georgi-Glashow model into the conformal superalgebra.

Model features:

\rightarrow All the quarks and leptons of the SM in the $5 *+10$
\rightarrow Gluons, W and B bosons plus X,Y bosons of the GG model in a 24 of SU(5)
\rightarrow Also extra U(1), (5,5*,ynew) + (5*,5,-ynew), SU(5), U(1)_ynew

My collaborators in the topic of susy in the adjoint

- J. Zanelli (CECs)
- P. Pais (U. Austral)
- M. Valenzuela (CECs)
- E. Rodriguez (U. Nac. Colombia)
- P. Salgado (PUCV)
- L. Delage (U. Talca)
- A. Chavez, J. Ortiz (phd students at Universidad de Antofagasta)

Why?

Susy in linear representation \rightarrow departure from unification

MSSM ~ 100 free parameters

SUGRA MSSM ~ 20 free parameters

Where is gravity?
Where are the superpartners?

SUSY in the adjoint representation

All fields in the gauge potential

- Bosons and fermions in the adjoint representation:

$$
\mathbb{A}=A^{M} \mathbb{G}_{M}+\overline{\mathbb{Q}} \phi \psi+\bar{\psi} \phi \mathbb{Q}
$$

$$
\begin{array}{r}
A^{M} G_{M}=W^{S} J_{S}+A^{I} \mathbb{T}_{I}+A_{A}^{T} \\
\text { spacetime internal susy } \\
\text { central }
\end{array}
$$

- Spinors matter fields require the introduction of a soldering form \rightarrow gravity

$$
\phi \psi=e_{\mu}^{a} d x^{\mu} \gamma_{a} \psi \quad g_{\mu \nu}=\eta_{a b} e_{\mu}^{a} e_{\nu}^{b}
$$

Unconventional matter coupling

- Matter in the adjoint representation: $\psi^{\alpha} \in A_{\mu}$
. Red. Reps. $\quad \Psi_{\mu}^{\alpha}=1 \otimes 1 / 2=3 / 2 \bigoplus 1 / 2$
(a) Gravitino
(SUGRA)

$$
\xi_{\mu}^{\alpha}: \gamma^{\mu} \xi_{\mu}^{\alpha}=0
$$

$$
P_{(1 / 2)} \xi_{\mu}^{\alpha}=0
$$

(b) UsUSY $\quad \psi_{\mu}^{\alpha}=\gamma_{\mu} \psi^{\alpha} \quad P_{(3 / 2)} \psi_{\mu}^{\alpha}=0$

Unconventional SUSY:

 fields in the adjoint rep$$
\mathbb{A}_{\mu} \supset \bar{Q} e^{a}{ }_{\mu} \gamma_{a} \psi
$$

- We choose a basis of the conformal superalgebra where the Q's carry an Rsymmetry rep
(see Trigiante's lectures on supergravity)
- From:

$$
\delta A_{S U(N)}=D \lambda_{S U(N)}
$$

$$
\delta \psi=\left[\lambda_{S U(N)}, \psi\right]
$$

Action inspired by SUGRA a la MacDowell-Mansouri

- The action is written as

$$
S=\int\langle\mathbb{F} \circledast \mathbb{F}\rangle
$$

Townsend '77
MacDowell, Mansouri '77 Castellani 1802.03407
Trigiante 1609.09745

- Obvious resemblance to Yang-Mills

$$
S=\int\langle\mathbb{F} * \mathbb{F}\rangle
$$

Similarity can be exploited to study field equations and symmetries [PA, Chavez Zanelli 2111.09845 hep-th]

Yang-Mills action

- Wanted: $\quad\langle\mathbb{F} \circledast \mathbb{F}\rangle \propto-\frac{1}{2} F * F+d^{4} x|e| \bar{\psi} \not D \psi$

From:

1) Matter in the adjoint rep. $\psi^{\alpha} \in A_{\mu}$
2) Generalized dual operator

$$
\circledast=?
$$

Unconventional SUSY

\rightarrow Conventional Dirac kinetic term? $\bar{\psi} \not D \psi$
$\langle\mathbb{F} \circledast \mathbb{F}\rangle \cdot$ curvature $\quad \mathbb{F}=d \mathbb{A}+\mathbb{A}^{2} \supset \bar{Q} D(\phi \psi)$

$$
\begin{array}{rlr}
\hat{\mathcal{F}}^{i} \gamma_{5} \mathcal{F}_{i} & =-\bar{\psi}^{1} \overleftarrow{D}_{\Omega_{5}} \nu_{\Omega} \chi^{1} & \left.\quad \text { (here } \bar{\psi}^{1}=\bar{\psi} \phi \text { and } \chi^{1}=\phi \psi\right) \\
& =\bar{\psi}^{1}\left(-\overleftarrow{D}^{+}+\Omega^{-}\right) \gamma_{5}\left(D^{+}+\Omega^{-}\right) \chi^{1} & \\
& =-\bar{\psi}^{1} \overleftarrow{D}^{+} \gamma_{5} D^{+} \chi^{1}-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} D^{+} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \chi^{1} \\
& =d\left[\bar{\psi}^{1} \gamma_{5} D^{+} \chi^{1}\right]+\bar{\psi}^{1} \gamma_{5}\left(D^{+}\right)^{2} \chi^{1}+\bar{\psi}(\overleftarrow{D} \phi+\neq 7) \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5}(-\phi D+\neq 7) \psi+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \lambda
\end{array}
$$

- Gradina

$$
f^{a}=\rho e^{a}, \quad g^{a}=\sigma e^{a},
$$

Dirac kinetic term

Unconventional SUSY

\rightarrow Conventional Dirac kinetic term? $\bar{\psi} \not D \psi$
$\langle\mathbb{F} \circledast \mathbb{F}\rangle$. Curvature

$$
\mathbb{F}=d \mathbb{A}+\mathbb{A}^{2} \supset \bar{Q} D(\phi \psi)
$$

$$
\hat{\mathcal{F}}^{i} \gamma_{5} \mathcal{F}_{i}=-\bar{\psi}^{1} \overleftarrow{D}_{\Omega} \gamma_{5} D_{\Omega} \chi^{1}
$$

(here $\bar{\psi}^{1}=\bar{\psi} \phi$ and $\left.\chi^{1}=\phi \psi\right)$

- Gradina
$\Omega=\Omega_{+}+\Omega_{-}$

$$
\Omega_{+}\left\{\begin{array}{l|l}
\text { Even generators } & \text { Odd generators } \\
\hline\left[\begin{array}{l}
{\left[\mathrm{J}_{a b}, S\right]=0} \\
{[\mathbb{Z}, S]=0}
\end{array}\right. & \left\{\mathrm{J}_{a}, S\right\}=0 \\
{\left[\mathbb{T}_{I}, S\right]=0} & S\}=0 \\
{[\mathbb{D}, S]=0} & \Omega_{-}=\frac{1}{2} f^{a} \mathrm{~J}_{a}+\frac{1}{2} g^{a} \mathbb{K}_{a}
\end{array}\right.
$$

Dirac kinetic term

Unconventional SUSY

\rightarrow Conventional Dirac kinetic term? $\bar{\psi} \not D \psi$
$\langle\mathbb{F} \circledast \mathbb{F}\rangle \cdot$ curvature $\quad \mathbb{F}=d \mathbb{A}+\mathbb{A}^{2} \supset \bar{Q} D(\phi \psi)$

$$
\begin{aligned}
& \hat{\mathcal{F}}^{i} \gamma_{55} \mathcal{F}_{i}=-\bar{\psi}^{1} \overleftarrow{D}_{\Omega} \gamma_{5} D_{\Omega} \chi^{1} \\
& \text { (here } \left.\bar{\psi}^{1}=\bar{\psi} \phi \text { and } \chi^{1}=\phi \psi\right) \\
& \begin{array}{l}
=\bar{\psi}^{1}\left(-\bar{D}^{+}+\Omega^{-}\right) \gamma_{5}\left(D^{+}+\Omega^{-}\right) \chi^{1} \\
=-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} D^{+} \chi^{1}-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} D^{+} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \chi^{1}
\end{array} \\
& =d\left[\psi^{1} \gamma_{5} D^{+} \chi^{1}\right]+\bar{\psi}^{1} \gamma_{5}\left(D^{+}\right)^{2} \chi^{1}+\bar{\psi}(\bar{D} \phi+7) \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5}(-\phi D+\neq) \psi+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-}
\end{aligned}
$$

- Gradina
$\Omega=\Omega_{+}+\Omega_{-}$
- Identification with frames

$$
\Omega_{+}\left\{\begin{array}{l|c}
\text { Even generators } & \text { Odd generators } \\
\hline\left[\begin{array}{l}
{\left[\mathrm{J}_{a b}, S\right]=0} \\
{[\mathbb{Z}, S]=0}
\end{array}\right. & \left\{\mathbb{J}_{a}, S\right\}=0 \\
{\left[\mathbb{T}_{I}, S\right]=0} & , S\}=0 \\
{[\mathbb{D}, S]=0} & \Omega_{-}=\frac{1}{2} f^{a} \mathrm{~J}_{a}+\frac{1}{2} g^{a} \mathbb{K}_{a}
\end{array}\right.
$$

Unconventional SUSY

\rightarrow Conventional Dirac kinetic term? $\bar{\psi} \not D \psi$
$\langle\mathbb{F} \circledast \mathbb{F}\rangle \cdot$ curvature $\quad \mathbb{F}=d \mathbb{A}+\mathbb{A}^{2} \supset \bar{Q} D(\phi \psi)$

$$
\begin{aligned}
& \hat{\mathcal{F}}^{i} \gamma_{5} \mathcal{F}_{i}=-\bar{\psi}^{1} \overleftarrow{D}_{\Omega} \gamma_{5} D_{\Omega} \chi^{1} \\
& \text { (here } \left.\bar{\psi}^{1}=\bar{\psi} \phi \text { and } \chi^{1}=\phi \psi\right) \\
& \begin{array}{l}
=\bar{\psi}^{1}\left(-\bar{D}^{+}+\Omega^{-}\right) \gamma_{5}\left(D^{+}+\Omega^{-}\right) \chi^{1} \\
=-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} D^{+} \chi^{1}-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} D^{+} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \chi^{1}
\end{array} \\
& =d\left[\bar{\psi}^{1} \gamma_{5} D^{+} \chi^{1}\right]+\bar{\psi}^{1} \gamma_{5}\left(D^{+}\right)^{2} \chi^{1}+\bar{\psi}(\bar{D} \phi+7) \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5}(-\phi D+\neq 7) \psi+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \\
& \text {- Gradina } \\
& \Omega=\Omega_{+}+\Omega_{-} \\
& \text {- Identification with frames }
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{-}=\frac{1}{2} f^{a} \mathrm{~J}_{a}+\frac{1}{2} g^{a} \mathbb{K}_{a}
\end{aligned}
$$

Unconventional SUSY

\rightarrow Conventional Dirac Kinetic term? $\bar{\psi} \not D \psi$
$\langle\mathbb{F} \circledast \mathbb{F}\rangle \cdot$ Curvature

$\mathbb{E}=d \mathbb{A}+\mathbb{A}^{2} \supset \bar{Q} D(\notin \psi)$

$$
\begin{aligned}
& \hat{\mathcal{F}}^{i} \gamma_{5} \mathcal{F}_{i}=-\bar{\psi}^{1} \overleftarrow{D}_{\Omega} \gamma_{5} D_{\Omega} \chi^{1} \\
& \text { (here } \left.\bar{\psi}^{1}=\bar{\psi} \phi \text { and } \chi^{1}=\phi \psi\right) \\
& =\bar{\psi}^{1}\left(-\bar{D}^{+}+\Omega^{-}\right) \gamma_{5}\left(D^{+}+\Omega^{-}\right) \chi^{1} \\
& =-\bar{\psi}^{1} \overleftarrow{D}^{+} \gamma_{5} D^{+} \chi^{1}-\bar{\psi}^{1} \bar{D}^{+} \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} D^{+} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \chi^{1} \\
& =d\left[\bar{\psi}^{1} \gamma_{5} D^{+} \chi^{1}\right]+\bar{\psi}^{1} \gamma_{5}\left(D^{+}\right)^{2} \chi^{1}+\bar{\psi}(\overleftarrow{D} \phi+\neq) \gamma_{5} \Omega^{-} \chi^{1}+\bar{\psi}^{1} \Omega^{-} \gamma_{5}(-\phi D+\nsubseteq) \psi+\bar{\psi}^{1} \Omega^{-} \gamma_{5} \Omega^{-} \chi^{1} \\
& \text { - Gradina } \\
& \Omega=\Omega_{+}+\Omega_{-} \\
& \text {- Identification with frames } \\
& \begin{array}{l}
\text { Even generators } \\
\begin{array}{l|l}
\text { Odd generators } \\
{\left[\begin{array}{l}
{[J a b} \\
\hline
\end{array}\right)=0} & \left\{\mathrm{~J}_{a}, S\right\}=0 \\
{[\mathbb{Z}, S]=0} & \left\{\mathbb{K}_{a}, S\right\}=0
\end{array}
\end{array} \\
& \Omega_{-}=\frac{1}{2} f^{a} \mathrm{~J}_{a}+\frac{1}{2} g^{a} \mathbb{K}_{a}
\end{aligned}
$$

$$
f^{a}=\rho e^{a}, \quad g^{a}=\sigma e^{a}
$$

$$
f^{a}=\rho e^{a}, \quad g^{a}=\sigma e^{a},
$$

f^{a} and g^{a} are nondynamical thanks to the S grading!

$$
\begin{aligned}
& \langle\mathbb{E} \circledast \mathbb{O}\rangle=0=\langle\mathbb{O} \circledast \mathbb{E}\rangle, \\
& \left\langle\mathbb{E}_{1} \circledast \mathbb{E}_{2}\right\rangle=\left\langle\mathbb{E}_{2} \circledast \mathbb{E}_{1}\right\rangle, \\
& \left\langle\mathbb{O}_{1} \circledast \mathbb{O}_{2}\right\rangle=-\left\langle\mathbb{O}_{2} \circledast \mathbb{O}_{1}\right\rangle .
\end{aligned}
$$

Very transparent:

- Field equations and integrabillity conditions
- genuine gauge symmetries v/s on-shell symmetries
- Natural definition of self-dual condition

$$
\circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)= \pm\left(\mathbb{F}-\mathbb{F}^{-}\right) .
$$

\rightarrow Field equations:

$$
D_{\mathrm{A}} \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)=0 .
$$

\rightarrow Integrability condition: $\quad\left[\mathbb{F}, \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)\right]=0$.
\rightarrow Symmetry invariance:
$\delta(-\langle\mathbb{F} \circledast \mathbb{F}\rangle)=-2 d\left\langle D_{\mathbb{A}} G \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)+G D_{\mathbb{A}} \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)\right\rangle+2\left\langle G\left[\mathbb{F}, \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)\right]\right\rangle$.
\rightarrow S-gradding odd generators and supercharges are on-shell sym:

$$
\begin{aligned}
{\left[\mathbb{F}, \circledast\left(\mathbb{F}-\mathbb{F}^{-}\right)\right]=} & \left(\mathcal{G}^{a}\left(\varepsilon_{1} *\right) \mathcal{H}-\varepsilon_{s} \frac{1}{2} \epsilon^{a}{ }_{b c d} \mathcal{F}^{b} \mathcal{F}^{c d}+\overline{\mathcal{X}} \gamma^{a}\left(-i \varepsilon_{\psi} \gamma_{5}\right) \mathcal{X}\right) \mathbb{J}_{a} \\
& +\left(\mathcal{F}^{a}\left(\varepsilon_{1} *\right) \mathcal{H}-\varepsilon_{s} \frac{1}{2} \epsilon^{a}{ }_{b c d} \mathcal{G}^{b} \mathcal{F}^{c d}-\overline{\mathcal{X}} \tilde{\gamma}^{a}\left(-i \varepsilon_{\psi} \gamma_{5}\right) \mathcal{X}\right) \mathbb{K}_{a} \\
& +[(\mathbb{F}-\mathbb{X}), \circledast \mathbb{X}]+\left[\mathbb{X}, \circledast \mathbb{F}^{+}\right] .
\end{aligned}
$$

Grand Unified Theories [Georgi, Glasgow '74]

$$
\begin{array}{r}
\left(v_{\epsilon}, \mathrm{e}^{-}\right)_{L}:(1,2) \\
\mathrm{e}_{\mathrm{L}}^{+}:(1,1) \\
\left(\mathrm{u}_{\alpha}, \mathrm{d}_{\alpha}\right)_{\mathrm{L}}:(3,2) \\
\mathrm{u}_{L}^{c \alpha}:\left(3^{*}, 1\right) \\
\mathrm{d}_{\mathrm{L}}^{\mathrm{c} \alpha}:\left(3^{*}, 1\right)
\end{array}
$$

- Standard model: 15 left-handed fermions
- Can be accommodated in the SU(5) reps

The fundamental conjugate rep $\psi^{i} \quad \mathbf{5}^{*}=\left(\mathbf{3}^{*}, 1\right)+\left(\mathbf{1}, \mathbf{2}^{*}\right)$

$$
5^{*}:\left(\psi^{1}\right)_{L}=\left(d^{d^{1}} d^{c^{2}} d^{d^{3}} e^{-}-v_{c}\right)_{L}
$$

The antisymmetric $5 \times 5 \psi_{i j}=-\psi_{j i} 10=\left(3^{*}, \mathbf{1}\right)+(\mathbf{3}, 2)+(1,1) . \quad \mathbf{5}:\left(\psi_{i}\right)_{\mathrm{R}}=\left(\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \mathrm{e}^{+}-v_{\mathrm{c}}^{\mathrm{c}}\right)_{\mathrm{R}}$

$$
\left.\begin{array}{l}
\varepsilon^{a \beta \gamma} \psi_{\alpha \beta} \sim\left(3^{*}, 1\right) \varepsilon_{r s} \psi^{r s} \sim(1,1) \\
l^{a}=(v, \mathrm{e})_{\mathrm{L}} \text { as a } 2 \text { under } \mathrm{SU}(2) l^{b}=\varepsilon^{a b} l_{a} \cdot
\end{array} \quad 10:\left(\chi_{i j}\right)_{\mathrm{L}}=\frac{1}{\sqrt{ } 2}\left[\begin{array}{ccccc}
0 & \mathrm{u}^{c 3} & -\mathrm{u}^{\mathrm{c} 2} & \mathrm{u}_{1} & d_{1} \\
-\mathrm{u}^{c 3} & 0 & \mathrm{u}^{\mathrm{cl}} & \mathrm{u}_{2} & d_{2} \\
\mathrm{u}^{c 2} & -\mathrm{u}^{c 1} & 0 & \mathrm{u}_{3} & d_{3} \\
-\mathrm{u}_{1} & -\mathrm{u}_{2} & -\mathrm{u}_{3} & 0 & e^{+} \\
-\mathrm{d}_{1} & -\mathrm{d}_{2} & -\mathrm{d}_{3} & -\mathrm{e}^{+} & 0
\end{array}\right]_{\mathrm{L}}\right]
$$

Conformal superalgebra for SU(2,2|N) GUT

Superconformal algebra for Unified theories

 $\operatorname{SU}(2,2) \times \operatorname{SU}(N) \times U(1) \subset \operatorname{SU}(2,2 \mid N)$
conformal algebra $\sim \operatorname{SU}(2,2) \quad x \quad \operatorname{SU}(\mathrm{~N})$

$$
\begin{array}{cc}
{\left[\mathrm{J}_{a}, \mathrm{~J}_{b c}\right]=\eta_{a b} \mathrm{~J}_{c}-\eta_{a c} \mathrm{~J}_{b},} & {\left[\mathbb{T}_{I}, \mathbb{T}_{J}\right]=f^{I J K} \mathbb{T}_{K}} \\
{\left[\mathrm{~J}_{a b}, \mathrm{~J}_{c d}\right]=-\left(\eta_{a c} \mathrm{~J}_{b d}-\eta_{a d} \mathrm{~J}_{b c}-\eta_{b c} \mathrm{~J}_{a d}+\eta_{b d} \mathrm{~J}_{a c}\right)} & \\
{\left[\mathbb{K}_{a}, \mathbb{K}_{b}\right]=-\mathrm{J}_{a b} .} & W^{m n}=\left[\begin{array}{l|l}
\omega^{a b} & e^{a} \\
{\left[\mathrm{~J}_{a}, \mathbb{K}_{b}\right]=s \eta_{a b} \mathbb{D} .} & \\
{\left[\mathbb{K}_{a}, \mathrm{~J}_{b c}\right]=\eta_{a b} \mathbb{K}_{c}-\eta_{a c} \mathbb{K}_{b} .} & \\
{\left[\mathbb{D}, \mathbb{K}_{a}\right]=-s^{-1} \mathrm{~J}_{a} .} & \\
{\left[\mathbb{D}, \mathrm{J}_{a}\right]=-s \mathbb{K}_{a} .} &
\end{array}\right]
\end{array}
$$

Superconformal algebra for Unified theories $\operatorname{SU}(2,2) \times \operatorname{SU}(N) \times U(1) \subset \operatorname{SU}(2,2 \mid N)$

$\left[\mathbb{Z}, Q_{i}^{\alpha}\right]=\frac{i z}{3} Q_{i}^{\alpha}$
$\left\{\mathbb{Q}_{i}^{\alpha}, \overline{\mathbb{Q}}_{\beta}^{j}\right\}=\left(\frac{1}{2 s}\left(\gamma^{\alpha}\right)^{\alpha}{ }_{\beta} \mathrm{J}_{a}-\frac{1}{2}\left(\Sigma^{a b}\right)^{\alpha}{ }_{\beta} \mathrm{J}_{a b}-\frac{1}{2}\left(\tilde{\gamma}^{\alpha}\right)^{\alpha}{ }_{\beta} \mathbb{K}_{a}+\frac{1}{2}\left(\gamma^{5}\right)^{\alpha}{ }_{\beta} \mathrm{D}\right) \delta_{i}^{j}+\delta_{\beta}^{\alpha}\left(-i\left(\lambda_{I}\right)_{i}^{j} \mathbb{T}_{I}-\frac{i}{4 z} \delta_{i}^{j} \mathbb{Z}\right)$

$$
\left[\mathrm{J}_{a}, \mathrm{~J}_{b c}\right]=\eta_{a b} \mathrm{~J}_{c}-\eta_{a c} \mathrm{~J}_{b},
$$

$$
\left[\mathbb{T}_{I}, \mathbb{T}_{J}\right]=f^{I J K} \mathbb{T}_{K}
$$

$$
\left[\mathrm{J}_{a b}, \mathrm{~J}_{c d}\right]=-\left(\eta_{a c} \mathrm{~J}_{b d}-\eta_{a d} \mathrm{~J}_{b c}-\eta_{b c} \mathrm{~J}_{a d}+\eta_{b d} \mathrm{~J}_{a c}\right)
$$

$$
\begin{aligned}
& {\left[\mathbb{K}_{a}, \mathbb{K}_{b}\right]=-\mathrm{J}_{a b} .} \\
& {\left[\mathrm{J}_{a}, \mathbb{K}_{b}\right]=s \eta_{a b} \mathrm{D} .}
\end{aligned}
$$

$$
\left[\mathbb{K}_{a}, \mathrm{~J}_{b c}\right]=\eta_{a b} \mathbb{K}_{c}-\eta_{a c} \mathbb{K}_{b} .
$$

$\left[\mathrm{J}_{a}, \overline{\mathrm{Q}}_{\infty}\right.$ susy ${ }^{\text {ren }}$ equires J to include a central charge
$\left[\mathrm{J}_{a b}, \overline{\mathrm{Q}}_{a}\right] \mathrm{SU}(2,2) \times \mathrm{SU}(\mathrm{N}) \times \mathbf{U}(1)$
$\left[\mathrm{D}, \mathbb{K}_{a}\right]=-s^{-1} \mathrm{~J}_{a}$.
$\left[\mathbb{K}_{a}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=\frac{1}{2} \overline{\mathbb{Q}}_{\beta}^{i}\left(\tilde{\gamma}_{a}\right)^{\beta}{ }_{\alpha} ;$
$\left[\mathbb{K}_{a}, \mathbb{Q}_{i}^{a}\right]$

$$
\left[\mathrm{D}, \mathrm{~J}_{a}\right]=-s \mathbb{K}_{a} .
$$

Superconformal algebra for Unified theories $\operatorname{SU}(2,2) \times \operatorname{SU}(\mathrm{N}) \times \mathrm{U}(1) \subset \mathrm{SU}(2,2 \mid \mathrm{N})$

$$
\begin{gathered}
{\left[\mathbb{T}_{I}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=-\frac{i}{2} \overline{\mathbb{Q}}_{\alpha}^{j}\left(\lambda_{I}\right)_{j}^{i}, \quad\left[\mathbb{T}_{I}, \mathbb{Q}_{i}^{\alpha}\right]=\frac{i}{2}\left(\lambda_{I}\right)_{i}^{j} \mathbb{Q}_{j}^{\alpha},} \\
{\left[\mathbb{Z}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=-\frac{i z}{3} \overline{\mathbb{Q}}_{\alpha}^{i}, \quad\left[\mathbb{Z}, \mathbb{Q}_{i}^{\alpha}\right]=\frac{i z}{3} \mathbb{Q}_{i}^{\alpha},}
\end{gathered}
$$

$\left\{\mathbb{Q}_{i}^{\alpha}, \overline{\mathbb{Q}}_{\beta}^{j}\right\}=\left(\frac{1}{2 s}\left(\gamma^{\alpha}\right)^{\alpha}{ }_{\beta} \mathrm{J}_{a}-\frac{1}{2}\left(\sum^{\alpha b}\right)^{\alpha}{ }_{\beta} \mathrm{J}_{a b}-\frac{1}{2}\left(\tilde{\gamma}^{\alpha}\right)^{\alpha} \hat{\mathrm{a}}_{a}+\frac{1}{2}\left(\gamma^{j}\right)^{\alpha}{ }_{\beta} \mathrm{D}\right) \delta_{i}^{j}+\delta_{\beta}^{\alpha}\left(-i\left(\lambda_{I}\right)_{i}^{j} \mathbb{T}_{I}-\frac{i}{4 s} \delta_{i}^{j} \mathbb{Z}\right)$
Spinors carry a rep. of the bosonic algebra $\operatorname{Slad}_{a c}(2,2) \times \operatorname{SU}(\mathbb{N}) \times \mathrm{U}(1)$

$$
A^{A B}=\left[\begin{array}{l|l}
W & \psi \\
\hline \bar{\psi} & A_{I}
\end{array}\right]\left[\begin{array}{ll}
{\left[\mathbb{J}_{a}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=\frac{s}{2} \overline{\mathbb{Q}}_{\beta}^{i}\left(\gamma_{a}\right)^{\beta}{ }_{\alpha},} & {\left[\mathbb{J}_{a}, \mathbb{Q}_{i}^{\alpha}\right]=-\frac{s}{2}\left(\gamma_{a}\right)^{\alpha}{ }_{\beta} \mathbb{Q}_{i}^{\beta},} \\
{\left[\mathbb{J}_{a b}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=\overline{\mathbb{Q}}_{\beta}^{i}\left(\Sigma_{a b}{ }^{\beta}{ }_{\alpha},\right.} & {\left[\mathbb{J}_{a b}, \mathbb{Q}_{i}^{\alpha}\right]=-\left(\Sigma_{a b}\right)^{\alpha}{ }_{\beta} \mathbb{Q}_{i}^{\beta},} \\
{\left[\mathbb{K}_{a}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=\frac{1}{2} \overline{\mathbb{Q}}_{\beta}^{i}\left(\tilde{\gamma}_{a}\right)^{\beta},} & {\left[\mathbb{K}_{a}, \mathbb{Q}_{i}^{\alpha}\right]=-\frac{1}{2}\left(\tilde{\gamma}_{a}\right)^{\alpha}{ }_{\beta} \mathbb{Q}_{i}^{\beta},} \\
{\left[\mathbb{D}, \overline{\mathbb{Q}}_{\alpha}^{i}\right]=\frac{1}{2} \overline{\mathbb{Q}}_{\beta}^{i}\left(\gamma_{5}\right)^{\beta},} & {\left[\mathbb{D}, \mathbb{Q}_{i}^{\alpha}\right]=-\frac{1}{2}\left(\gamma_{5}\right)^{\alpha}{ }_{\beta} \mathbb{Q}_{i}^{\beta},}
\end{array}\right.
$$

Superconformal algebra for Unified theories $\operatorname{SU}(2,2) \times \operatorname{SU}(5) \times \mathrm{U}(1) \subset \operatorname{SU}(2,2 \mid 5)$

$$
\left[\mathrm{T}_{I}, \overline{\mathrm{Q}}_{\alpha}^{i}\right]=-\frac{i}{2} \overline{\mathrm{Q}}_{\alpha}^{j}\left(\lambda_{I}\right)_{j}{ }^{i}, \quad\left[\mathrm{~T}_{I}, \mathrm{Q}_{i}^{\alpha}\right]=\frac{i}{2}\left(\lambda_{I}\right)_{i}^{j} \mathrm{Q}_{j}^{\alpha},
$$

GG model

$$
5^{*}:\left(\psi^{i}\right)_{L}=\left(d^{c 1} d^{c 2} d^{c 3} e^{-}-v_{c}\right)_{L}
$$

wanted: Q_{ij}

$$
\Psi=\bar{Q}^{i j} \chi_{i j} \subset \mathbb{A}
$$

$$
\left[\mathbb{T}_{I}, \mathbb{Q}_{i j}^{\alpha}\right]=i\left(t_{I}\right)_{i j}{ }^{k l} \mathbb{Q}_{k l}^{\alpha},
$$

$$
\left[\mathbb{T}_{I}, \overline{\mathbb{Q}}_{\alpha}^{i j}\right]=-i \overline{\mathbf{Q}}_{\alpha}^{k l}\left(t_{I}\right)_{k l}{ }^{i j}
$$

New bosons
w.r.t. GG model $A_{X}=\left\{A_{I}, A_{\tilde{X}}\right\}$

$$
\begin{array}{r}
\nabla^{\prime} \chi_{L}^{\text {phys }}=\nabla_{s u(5)} \chi_{L}^{\text {phys }}-i g A_{\left.A^{\tilde{X}} t_{\hat{X}} \chi_{L}^{\text {phys }}-i g_{(U(1))}^{(\text {rank } 2}\right)}^{A A_{L}^{\text {phys }},} \\
\operatorname{SU}(2,2) \times \operatorname{SU}(10) \times U(1)
\end{array}
$$

- Group theory decomposition.

$$
\mathbf{9 9}=(\mathbf{2 4}, \mathbf{1}, 0)+(\mathbf{1}, \mathbf{2 4}, 0)+(\mathbf{1}, \mathbf{1}, 0)+\left(\mathbf{5}, \mathbf{5}^{*},-y_{\text {new }}\right)+\left(\mathbf{5}^{*}, \mathbf{5}, y_{\text {new }}\right.
$$

Charge assignation

$$
5^{*}
$$

$$
\left(\psi_{i}\right)_{L}=\left(\begin{array}{l}
d_{1}^{c} \\
d_{1}^{c} \\
d_{1}^{c} \\
e^{-} \\
-\nu_{e}
\end{array}\right)_{L}\left(\chi_{i j}\right)_{L}=\left(\begin{array}{ccccc}
0 & u_{3}^{c} & -u_{2}^{c} & -u^{1} & -d^{1} \\
-u_{3}^{c} & 0 & u_{1}^{c} & -u^{2} & -d^{2} \\
u_{2}^{c} & -u_{1}^{c} & 0 & -u^{3} & -d^{3} \\
u^{1} & u^{2} & u^{3} & 0 & -e^{+} \\
d^{1} & d^{2} & d^{3} & e^{+} & 0
\end{array}\right)
$$

Commutators in the superalgebra!

$$
\Psi(x)=\bar{Q} \psi(x)
$$

$\left[Q_{\text {elec }}, \Psi(x)\right]=q_{\text {elec }} \Psi(x) \quad[Y, \Psi(x)]=y \Psi(x)$

GUT model action

$$
\mathcal{S}=-\int\left(\langle\xi \mathbb{F} \circledast \mathbb{F}\rangle+\left\langle\xi^{\prime} \mathbb{F}^{\prime} \circledast \mathbb{F}^{\prime}\right\rangle\right)
$$

$$
\circledast \mathbb{F}=\left(\varepsilon_{s} S\right)\left(\frac{1}{2} \mathcal{F}^{a b} \mathrm{~J}_{a b}+\mathcal{F}^{a} \mathrm{~J}_{a}+\mathcal{G}^{a} \mathrm{~K}_{a}\right)
$$

$$
\varepsilon_{s}=+1=\varepsilon_{1}=\varepsilon_{2}=-\varepsilon_{3}
$$

$$
+\left(\varepsilon_{1} *\right) \mathcal{H} \mathbb{D}+\left(\varepsilon_{2} *\right) \mathcal{F}^{I} \mathrm{~T}_{I}+\left(\varepsilon_{3} *\right) \mathcal{F} \mathbb{Z}
$$

Explicit computation gives:

$$
+\overline{\mathbb{Q}}\left(-i \varepsilon_{\psi} \gamma_{5}\right) \mathcal{X}+\overline{\mathcal{X}}\left(-i \varepsilon_{\psi} \gamma_{5}\right) \mathrm{Q} .
$$

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{4} \varepsilon_{s}\left(\xi+\xi^{\prime}\right) \epsilon_{a b c d} \mathcal{F}^{a b} \mathcal{F}^{c d}-\varepsilon_{1}\left(\xi+\xi^{\prime}\right) \mathcal{H} * \mathcal{H} \\
& -\frac{1}{2} \varepsilon_{2}\left(\xi \mathcal{F}^{I} * \mathcal{F}^{I}+\xi^{\prime}(n-2) \mathcal{F}^{\prime X} * \mathcal{F}^{\prime X}\right) \\
& -4 \varepsilon_{3}\left[\xi(4 / n-1)+\xi^{\prime}\left(4 / d_{n}-1\right)\right] \mathcal{F} * \mathcal{F}, \\
& -2 i \varepsilon_{\psi} \overline{\mathcal{X}} \gamma_{5} \mathcal{X}-\frac{i}{2} \varepsilon_{\chi} \overline{\mathcal{Y}} \gamma_{5} \mathcal{Y} .
\end{aligned}
$$

Dirac terms
 $$
-2 i \varepsilon_{\psi} \overline{\mathcal{X}} \gamma_{5} \mathcal{X}-\frac{\imath}{2} \varepsilon_{\chi} \overline{\mathcal{Y}} \gamma_{5} \mathcal{Y}
$$

- Action

$\mathcal{L} \supset \mathscr{L}_{\mathrm{r}}=\mathrm{i}\left(\overline{\psi_{\mathrm{R}}}\right)_{a}\left(\mathcal{D}_{\mathrm{L}} \psi_{\mathrm{R}}^{\mathrm{s}}\right)^{a}+\mathrm{i}\left(\overline{\psi_{\mathrm{K}}}\right)_{a \mathrm{c}}\left(\boldsymbol{\mathcal { D }} \psi_{\mathrm{L}}\right)^{a c}$

$$
\begin{aligned}
\not \nabla \psi_{L}^{\text {phys }} & =\not{ }_{s u(5)} \psi_{L}^{\text {phys }}-i g_{(U(1))}^{\text {rank 1) }} A \psi_{L}^{\text {phys }}, \\
\nabla^{\prime} \chi_{L}^{\text {phys }} & =\not \ddot{\phi}_{s u(5)} \chi_{L}^{\text {phys }}-i g A^{\tilde{x}} t_{\tilde{X}} \chi_{L}^{\text {phys }}-i g_{U(U(1))}^{\text {(rank 2) }} A \chi_{L}^{\text {phys }},
\end{aligned}
$$

New w.r.t. the GG model

Parameters

- Bosonic part

$$
-\frac{1}{2} \varepsilon_{2}\left(\xi+\xi^{\prime}(n-2)\right) F^{I} * F^{I}
$$ of the Lagrangian

$$
\mathcal{L}_{\mathrm{b}}=\frac{1}{4} \varepsilon_{s}\left(\xi+\xi^{\prime}\right) \epsilon_{a b c d} \mathcal{R}^{a b} \mathcal{R}^{c d}-\varepsilon_{1}\left(\xi+\xi^{\prime}\right) H * H
$$

$$
-4 \varepsilon_{3}\left[\xi(4 / n-1)+\xi^{\prime}\left(4 / d_{n}-1\right)\right] F * F
$$

$$
-\frac{(n-2)}{2} \varepsilon_{2} \xi^{\prime}\left[2 F^{I} * F_{1}^{I}+F_{1}^{I} * F_{1}^{I}+F^{\tilde{X}} * F^{\tilde{X}}\right],
$$

- No ghost conditions

$$
\begin{aligned}
& \xi+\xi^{\prime}>0, \\
& \xi(4 / n-1)+\xi^{\prime}\left(4 / d_{n}-1\right)<0, \\
& \xi+\xi^{\prime}(n-2)>0
\end{aligned}
$$

We overcome technical difficulties encountered by Ferrara, Kaku, Townsend, van Nieuwenhuizen in the late 70s

Gauge coupling constants

- Canonical normalization of the fields

$$
\left.\begin{array}{c}
-a F * F=-\frac{1}{2} F^{\prime} * F^{\prime}, \\
D=d-i g_{0} \rho\left(T_{r}\right) A^{r}, \\
A^{\prime}=\sqrt{2 a} A
\end{array}\right\} \quad \begin{aligned}
& g_{(S U(n))}=g_{\left(S U\left(d_{n}\right)\right)}=\frac{1}{\sqrt{\xi+\xi^{\prime}(n-2)}}, \\
& g_{(U(1))}^{(\mathrm{rank} \mathrm{1)}}=\frac{4 / n-1}{\sqrt{-8\left(\xi(4 / n-1)+\xi^{\prime}\left(4 / d_{n}-1\right)\right)}}, \\
& g_{(U(1))}^{(\mathrm{rank} 2)}=\frac{4 / d_{n}-1}{\sqrt{-8\left(\xi(4 / n-1)+\xi^{\prime}\left(4 / d_{n}-1\right)\right)}} .
\end{aligned}
$$

Summary of the model

- Symmetry group $S U(2,2 \mid 5)_{\text {diag }}=[S U(2,2 \mid 5) \times S U(2,2 \mid 10)]_{\text {diag }}$
- All fields in the adjoint rep.

$$
\begin{aligned}
& \mathbb{A}=\Omega+\overline{\mathbb{Q}}^{i} \phi \psi_{i}+\bar{\psi}^{i} \phi \mathbb{Q}_{i}, \\
& \mathbb{A}^{\prime}=\Omega^{\prime}+\frac{1}{2} \overline{\mathbb{Q}}^{i j} \phi \chi_{i j}+\frac{1}{2} \bar{\chi}^{i j} \phi \mathbb{Q}_{i j},
\end{aligned}
$$

$$
\begin{aligned}
\Omega & =\frac{1}{2} \omega^{a b} \mathrm{~J}_{a b}+f^{a} \mathrm{~J}_{a}+g^{a} \mathbb{K}_{a}+h \mathbb{D}+A^{I} \mathbb{T}_{I}+A \mathbb{Z}, \\
\Omega^{\prime} & =\frac{1}{2} \omega^{\prime a b} \mathrm{~J}_{a b}+f^{\prime a} \mathrm{~J}_{a}+g^{\prime a} \mathbb{K}_{a}+h^{\prime} \mathbb{D}+A^{\prime X} \mathbb{T}_{X}+A^{\prime} \mathbb{Z} .
\end{aligned}
$$

- Diagonal symmetry group
\rightarrow Highly predictive
\rightarrow Embedding of SU(5) GG model + new gauge fields
\rightarrow Chiral theory from a L-R handed symmetric theory
$\omega^{\prime a b}=\omega^{a b}$,
$f^{\prime a}=f^{a}$,
$g^{\prime a}=g^{a}$,
$h^{\prime}=h$,
$A^{\prime}=A$,
$\left.A^{\prime X}\right|_{X=I}=A^{I}$.

Outlook

- Pheno. SSB: $\mathrm{SU}(10) \rightarrow \mathrm{SU}(5) \rightarrow \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \rightarrow \mathrm{SU}(2) \times \mathrm{U}(1)$

$$
\mathbf{9 9}=(\mathbf{2 4}, \mathbf{1}, 0)+(\mathbf{1}, \mathbf{2 4}, 0)+(\mathbf{1}, \mathbf{1}, 0)+\left(\mathbf{5}, \mathbf{5}^{*},-y_{\text {new }}\right)+\left(\mathbf{5}^{*}, \mathbf{5}, y_{\text {new }}\right)
$$

- Embedding of other GUT schemes that are phenomenologically more successful, anomaly free? Pati-Salam SO(10)?
- Model with gravitini: full theory and study of the on-shell symmetries (horizontal symmetries)
- USUSY non-renormalization theorems? Nieh-Yano-Weyl symmetry anomaly?(trace anomaly)
- Cosmology USUSY: H0 problem?

$$
H^{2}=H_{0}^{2}\left(\Omega_{m}(1+z)^{-3}+\Omega_{r}(1+z)^{-4}+\Omega_{\Lambda}\right)+\left(\frac{\dot{w}_{0}}{w_{0}}\right)^{2}(1+z)^{-6}
$$

References

Thank you

GUT: This work

- PA, Chavez, Zanelli, J Mat Phys 63 (4) p. 042304; 2110.06828
- PA, Chavez, Zanelli, JHEP 02 (2022) 111; 2111.09845
- PA, Chavez, Zanelli, 2211. 12473

- Class.Quant.Grav. 32 (2015) 17, 175014 ; 1505.03834
- JHEP 07 (2021) 176; 2105.14606
- Symmetry 13 (2021) 4, 628; 2104.05133
- Int. J. Mod. Phys. D 29 (2020) 11; 2041012
- JHEP 07 (2020) 07, 205; 2005.04178

- Phys.Lett.B 738 (2014) 134-135; $\mathbf{1 4 0 5 . 6 6 5 7}$
- Phys.Lett.B 735 (2014) 314-321; 1306.1247.
- JHEP 04 (2012) 058; 1109.3944
- Class. Quantum Grav. 39 245007, 2208.07897

