NLO J / ψ production with the Color Evaporation Model

Benjamin Guiot
in collaboration with
Hautmann, Jung, Radic and Werner
\section*{HEP 2023}

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Quarkonia production

Color-evaporation model (CEM); 1977; Fritzsch, Halzen:
Numerous non-perturbative gluon emissions \Rightarrow quantum states of the $Q \bar{Q}$ and H can be different

Color-singlet model (CSM); ~1980; Chang, Berger and Jones, Baier and Ruckl:

Quantum state of the pair does not evolve between its production and its hadronisation.

Color-octet mechanism (COM) and NRQCD 1997; Bodwin, Braaten, and Lepage.

- All based on the factorization (hypothesis) of the cross section into short-distance coefficients and long-distance functions. Factorization not always explicitly stated.

Quarkonia production: factorization point of view Factorization
 $\mathrm{CEM} \longrightarrow$ NRQCD
 Bodwin, Braaten and Lee
 $$
\text { PRD } 72
$$

Includes CS and CO
contributions
Just one LDME
EFT: expansion parameter v
Includes CS and CO contributions
Several LDMEs

- The difference between CEM and NRQCD is non-perturbative.

The fact. formalism includes a fragmentation contribution $i \rightarrow H$.

CEM at NLO

Lansberg, Phys.Rept. 889 (2020) 1-106

Main issue: Spectrum too hard. Due to NLO contributions $g g \rightarrow g Q \bar{Q}$

Our main goals:

1. Solve this issue
2. Compare with LO results obtained with the k_{t}-factorization formalism \rightarrow contrains on unintegrated PDFs (UPDFs).

Proposed solution

NLO calculations + timelike parton shower (TPS)

- The starting scale for parton showers is usually $Q_{i n i} \sim p_{t}$, with p_{t} the HQ transverse momentum
- Larger $p_{t} \Rightarrow$ longer shower \Rightarrow more energy loss by the $Q \bar{Q} \Rightarrow$ softer spectrum
Consequence for NRQCD:
- The diagram responsable for the too-hard spectrum is also present in NRQCD
- Changes induced by the timelike shower will modify the value of the extracted LDMEs
- Could solve some of the tensions in LDMEs' fits (e.g., between differential cross section and polarization data or between different sets)
Kang, Ma, Qiu, and Sterman: Absence of resummation of $\ln \left(p t^{2} / m_{Q}^{2}\right)$ could affect the LDMEs' fits PRD, Vol. 90, No. 3.

Our framework

1. k_{t}-factorization (LO diagrams do contribute) with PB UPDFs:
$\frac{d \sigma}{d x_{1} d x_{2} d^{2} p_{t}}=\int^{\sim s} d^{2} k_{1 t} d^{2} k_{2 t} F_{i}\left(x_{1}, k_{1 t}^{2} ; \mu^{2}\right) F_{j}\left(x_{2}, k_{2 t}^{2} ; \mu^{2}\right) \hat{\sigma}_{i j}\left(\hat{s}, k_{1 t}^{2}, k_{2 t}^{2}, p_{t}^{2}, \mu^{2}\right)$
2. NLO cross section for $Q \bar{Q}$ with Madgraph5_aMC@NLO
(fixed-flavor-number scheme, $n_{f}=3, m_{c}=1.3 \mathrm{GeV}$)
3. Timelike parton shower with PYTHIA6 (through CASCADE3)

Framework used for Drell-Yan data, Bermudez Martinez et al., Eur. Phys. J. C (2020) 80:598.

J / ψ production mechanism

Color-evaporation model (CEM):

$$
d \sigma=F_{J / \psi} \int_{2 m_{c}}^{2 m_{D^{0}}} \frac{d \sigma}{d m_{c \bar{c}}} d m_{c \bar{c}}
$$

Improved-color-evaporation model (ICEM):
Ma and Vog, Phys. Rev. D 94, 114029 ; Cheung and Vogt, Phys. Rev. D 96, 054014, Phys. Rev. D 98, 114029.

$$
\frac{d \sigma}{d^{3} P_{J / \psi}}=F_{J / \psi} \int_{m_{J / \psi}}^{2 m_{D^{0}}} \frac{d \sigma(Q \bar{Q}+X)}{d m_{c \bar{c}} d^{3} p} d m_{c \bar{c}} d^{3} p \delta^{3}\left(\vec{P}_{J / \psi}-\frac{m_{J / \psi}}{m_{c \bar{c}}} \vec{p}\right)
$$

- $F_{J / \psi}$ expected to be universal
- We use $F_{J / \psi}=0.014$, Lansberg, Phys.Rept. 889 (2020) 1-106

Preliminary results at medium and large p_{t}

Preliminary results at small p_{t}

Parton-branching UPDFs play an important role at $p_{t} \lesssim 5 m_{C}$.

Same conclusion with EPOS 3

- EPOS 3 event generator: Generates realistic events
- The framework is different but has a timelike cascade

ATLAS data at 8 TeV, Eur. Phys. J. C (2016) 76:283.

Comparison with LO k_{t} factorization

Chernyshev, Saleev, PRD 106, 114006 (2022)

Too-hard spectrum: KMR UPDFs is probably not the best choice!

Final remark (factorization formalism)

Qiu, Sterman and Watanabe, arXiv:2211.12648v1 (2022)

$$
\begin{aligned}
\frac{\partial}{\partial \ln \mu^{2}} D_{f \rightarrow H}\left(z, \mu^{2}\right) & =\frac{\alpha_{s}(\mu)}{2 \pi} \sum_{f^{\prime}} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} P_{f \rightarrow f^{\prime}}\left(\frac{z}{z^{\prime}}\right) D_{f^{\prime} \rightarrow H}\left(z^{\prime}, \mu^{2}\right) \\
& +\frac{\alpha_{s}^{2}(\mu)}{\mu^{2}} \sum_{\kappa} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} P_{f \rightarrow[Q \bar{Q}(\kappa)]}\left(\frac{z}{z^{\prime}}\right) D_{[Q \bar{Q}(\kappa)] \rightarrow H}\left(z^{\prime}, \mu^{2}\right) \\
\frac{\partial}{\partial \ln \mu^{2}} D_{[Q \bar{Q}(\kappa)] \rightarrow H}\left(z, \mu^{2}\right) & =\frac{\alpha_{s}(\mu)}{2 \pi} \sum_{n} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} P_{[Q \bar{Q}(n)] \rightarrow[Q \bar{Q}(\kappa)]}\left(\frac{z}{z^{\prime}}\right) D_{[Q \bar{Q}(n)] \rightarrow H}\left(z^{\prime}, \mu^{2}\right)
\end{aligned}
$$

- Energy loss in the transition $Q \bar{Q}(n) \rightarrow Q \bar{Q}(\kappa)$
- The TPS approximately implement this equation
- A numerical code and analytical solution will be soon released by Qiu, Sterman and Watanabe
- Difficulties in the description of low- p_{t} data \Rightarrow matching with FO NRQCD calculations

Conclusion

- Color Evaporation Model at NLO + TPS seems in agreement with data.
- Consequences of NLO + resummation of $\log \left(p_{t}^{2} / m_{Q}^{2}\right)$ for the extraction of LDMEs?
- Both $d \sigma(J / \psi) / d p_{t}$ and $F_{J / \psi}$ give interesting contrains on UPDFs.

Thank you for your attention

