Searches for resonances decaying to pairs of heavy bosons in ATLAS

Alberto Annovi (INFN Pisa)

For the ATLAS collaboration

- Diboson resonances with leptonic decays
 - <u>ATLAS-CONF-2022-066</u> <u>Eur. Phys. J. C 81 (2021) 332</u> <u>arXiv:2207.03925</u>
- Higgs and Vector boson tagging
- Higgs boson pairs
 - <u>Phys. Rev. D 106 (2022) 052001</u> <u>arXiv:2209.10910</u>
 - Phys. Rev. D 105 (2022) 092002 ATLAS-CONF-2021-052
- Vector boson + Higgs searches
 - <u>arXiv:2207.00230</u> <u>arXiv:2210.05415</u> <u>arXiv:2211.02617</u>
- Generic X searches with Z or Higgs
 - <u>arXiv:2209.15345</u> <u>ATLAS-CONF-2022-045</u>

Introduction

- Many BSM models predict final states with SM bosons
- Analyses presented have heavy bosons in the final state
- When bosons decay hadronically jet reconstruction and boson tagging are key analysis ingredients
- Presented analyses use the full Run-2 dataset
- (Some) of the benchmark models used in the presented analyses are
 - Heavy Vector Triplet (HVT) and Randall-Sundrum Graviton
 - JHEP 09 (2014) 060 JHEP 01 (2013) 166 Phys. Rev. Lett. 83 (1999) 3370 Phys. Lett. B 473 (2000) 43
 - Georgi–Machacek Higgs <u>Nuclear Physics B 262 (1985) 463</u> Phys. Lett. B 165 (1985) 105
 - Radion <u>arXiv:1404.0102</u>
 - Narrow Width heavy Higgs <u>arXiv:1610.07922</u>
 - Large Width heavy Higgs <u>arXiv:1106.0034</u>
 - Twin Higgs models <u>JHEP 01 (2006) 126</u>
 - Two Higgs doublets and composite Higgs
 - JHEP 06 (2019) 066 Nucl. Phys. B853, 1 (2011) JHEP 06 (2011) 020 Phys. Rep. 516, 1 (2012)
 - MSSM Nucl. Phys. B193, 150 (1981) JHEP 10 (2013) 028 Eur. Phys. J. C 73, 2650 (2013)

Diboson resonances with leptonic decays

Search for Resonance (R), in the channel R \rightarrow WW \rightarrow $|\nu$ $|\nu$

ATLAS-CONF-2022-066

- Two Different Flavour, Opposite Sign Leptons, p_T > 25 GeV
- Third lepton veto, $p_T > 15 \text{ GeV}$
- B-jet veto
- Main Backgrounds: tt, Wt, WW

Model	Obs. limit [GeV]	Exp. limit $[GeV]$
Radion, ggF	1090	1190
Kaluza-Klein graviton, ggF	1340	1340
Kaluza-Klein graviton, VBF	500	500
HVT scenario A, qqA	2100	1890
HVT scenario B, qqA	2350	2130

Search for $R \rightarrow ZZ \rightarrow 4I$ and $R \rightarrow ZZ \rightarrow II \nu \nu$

- Improvements in full Run2 analysis
 - Mass range, Particle Flow, ...
- Combination of the 2 final states
- Cross-section limits in several interpretations:
 - NWA heavy Higgs with ggF+VBF, also translated to 2HDM contours
 - LWA heavy Higgs including interference modelling
 - Randall-Sundrum Graviton

Eur. Phys. J. C 81 (2021) 332

Search for WZ \rightarrow $l\nu$ ll

[dd] (ZW

 $\sigma \times B(W)$

10-

 10^{-2}

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Drell-Yan SR

Obs. 95% CL upper limi

Exp. 95% CL upper limit

Expected limit $(\pm 1\sigma)$

Expected limit $(\pm 2\sigma)$ HVT Model A, g = 1

HVT Model B, g, = 3

- Main selection:
 - 3 high p_T leptons
 - Missing transverse energy
 - 2 jets (in case of VBF production mode)
- Signal regions: cut based and ANN
- Resonance benchmark model:
 - Heavy Vector Triplets model
 - Georgi Machacek (GM) Higgs Triplet Model

Jets techniques

8

- Hadronic decays of a boson reconstructed as
 - Two resolved R=0.4 anti- k_{T} jets
 - Single large R=1 jet (for bosons with a large boost the jets merge)
- Use of Particle Flow and Track Calo Cluster (TCC) •
 - Eur. Phys. J. C 77 (2017) 466, ATL-PHYS-PUB-2017-015
- Combined in Unified Flow Objects (UFO) for best performance
 - Eur. Phys. J. C 81 (2021) 334

- **B-tagging** used to identify b-quarks
- Applied to jets and variable radius track jets matched to large R jets
- High level algorithms based on MV2 and DL1

ATLAS Simulation

INFN Tag W/Z boson dijet boson decays

- Boson tagging with R=1 jets and jet substructure variables
- Standard tagger uses calorimeter cluster jets
- TCC jets tagger cuts on 2 variables optimized in each p_T bin
 - Jet mass, D₂ two prong substructure
 - Efficiency and background rejection calibrated on 80 fb⁻¹ data

- On going development of UFO jets tagger
- UFO tagger uses NN or 3 variables cuts on
 - Jet mass
 - D₂ two prong substructure
 - number of ID tracks

Tagging Higgs \rightarrow bb decays

ATL-PHYS-PUB-2021-035

- Xbb tagger distinguish boosted Higgs boson bb decays from QCD jets and top quarks
- Combines flavor discriminants from up to three subjets using a feed-forward neural network
- Tag large R=1 jets

Higgs boson pairs

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

HEP 2023

Searches for resonances decaying to Higgs boson pairs

 $HH \rightarrow b\bar{b} \tau^+\tau^-$

$HH \rightarrow b\bar{b} \gamma\gamma$

• Selection

05200

(2022)

106

- 2 tight, isolated photons
- ≥2 jets : p_T>25 GeV, b-tagging
- Fit of the $m_{\gamma\gamma}$
 - for every $m(b\overline{b}\gamma\gamma)$ mass point

- Require 2 b-jets and 2 OS au leptons
- Final state $\tau_{\rm lep} \tau_{\rm had}$ and $\tau_{\rm had} \tau_{\rm had}$
- Backgrounds: tt, single top, V+jets, diboson, SM Higgs

m_X [GeV] HEP 2023

12

Higgs pair production in **bbbb** channel and combination

- -MS-Rev. D. 105-100220002 $b\overline{b}$ $b\overline{b}$ is the channel with largest BR for HH (34%)
 - Resolved channel (4 b-jets):
 - Machine learning-based jet pairing algorithm
 - Neural network-based background reweighting
 - Boosted channel (2 large-R jets):
 - Variable radius track jets
 - Extended resonance mass range (to 5 TeV) •

Higgs pair production in **bbbb** channel and combination

- -V5. Rev. P. 105' $b\overline{b}$ $b\overline{b}$ is the channel with largest BR for HH (34%)
 - Resolved channel (4 b-jets):

0920

INFŃ

- Machine learning-based jet pairing algorithm
- Neural network-based background reweighting
- Boosted channel (2 large-R jets):
 - Variable radius track jets
 - Extended resonance mass range (to 5 TeV) •

ATLAS-CONF-2021-052

Combination of $b\overline{b} \ b\overline{b} + b\overline{b} \ \tau\tau + b\overline{b} \ \gamma\gamma$

The largest excess is at $m_x = 1.1$ TeV local (global) significance of 3.2σ (2.1σ).

^{*p*} Vector boson + Higgs searches and Generic X searches with Z or Higgs

Run: 349309 Event: 769175011 2018-05-01 07:57:22 CEST

Search for new resonances decaying into W/Z + Higgs

arXiv:2207.00230

95% CL limit

Observed limit

Expected limit

Expected ±1 s.d.

Expected ±2 s.d.

Expected limit (0L)

Expected limit (2L)

1600

 \rightarrow Zh, $h \rightarrow b\overline{b} \cos(\beta \cdot \alpha) = 0.1$

±2 s.d. Excluded

1800 2000 m, [GeV]

1400

2HDM Type II

±1 s.d.

ATLAS

400

600

ATLAS

139 fb⁻

400

600

800

1000

16

1200

m_A [GeV]

1400

√s = 13 TeV

 10^{2}

< 10

ര(gg

 10^{-2}

 10^{-}

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

aaA combined (0L+2L) lim

- pp \rightarrow W'/Z' \rightarrow W/Z+h (W/Z \rightarrow I ν /II/ $\nu\nu$ h \rightarrow bb)
- pp \rightarrow A(+bb) \rightarrow Z+h (Z \rightarrow II/ $\nu\nu$ h \rightarrow bb)
- H identified with 1 or 2 b-tags
 - in resolved or merged jets channels
- W/Z channels with 0,1,2 (charged) lepton
- Limits extracted from fits of $m_{T,Vh}$ and m_{Vh} discriminants
- Interpreted as HVT, 2HDM models.

Search for heavy Higgs boson

INFN

Search for Z+X and $Y \rightarrow Z+X$

• Select high- $p_T Z \rightarrow II (p_T > 100 \text{ GeV})$ ATLAS Background fit √s = 13 TeV, 139 fb • Use 6 "lead" categories for X: small-R, large-R jets, b-jet, e, μ , γ BumpHunter interval $Z \rightarrow \ell \ell$, Le · dJ **= 1 TeV,** σ/**m = 3%** 10⁵ m_{Gaus} = 2 TeV, σ/m = 5% • X candidate formed with all reconstructed objects (except the Z) m_{Gaus} = 3 TeV, σ/m = 10% 10³ p-value: 0.69 Signals: model-independent gaussian-shaped and HVT 10^{2} • Search for local excesses in m_x and m_{zx} spectra iet2 lepton: fat jet lepton2 • HVT upper limits with topology: $W' \rightarrow ZW \rightarrow IIqq$ Beamline Beamline Beamline PV Z boson Z boson Z boson model-independent gaussian signals 2500 3000 3500 4000 [dd] m_v [GeV] [dd] - Observed 95% CL - Observed 95% CL [dd] ATLAS ATLAS ATLAS A Observed ----- Expected 95% CL _√s = 13 TeV, 139 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ----- Expected 95% CL × 10⁻¹ Х $10 = \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ----- Expected 15345 Expected $\pm 1 \sigma$ $Z \rightarrow \ell \ell$, inclusive $\Omega_{10^{-1}} \models Z \rightarrow \ell \ell$, inclusive Expected $\pm 1 \sigma$ m Expected $\pm 1 \sigma$ $Z \rightarrow \ell \ell$, Le-dF-tJ Expected $\pm 2 \sigma$ Gaussian, $\sigma/m = 3 \%$ Expected $\pm 2 \sigma$ Gaussian, $\sigma/m = 3 \%$ Х Х Expected $\pm 2 \sigma$ HVT ь ь HVT Model A, $g_{i} = 1$ 10-2 ≥ HVT Model B, g_v = 3 d d b 10⁻¹ 10^{-3} 10^{-3} 10^{-2} 10^{-4} 10⁻⁴ 10 2000 4000 6000 2000 3000 4000 5000 2000 1000 4000 5000 3000 m_{zv} [GeV] m_v [GeV] m_{zx} [GeV] 19 HEP 2023

Search for resonances in the channel Y \rightarrow X+Higgs \rightarrow qq bb

HEP 2023

ATLAS-CONF-2022-045

- At High Y mass (~1-6TeV), Y Reconstructed with two large-R jets
- Additional resolved region defined for less boosted X
 - X reconstructed with two small-R jets
- H Candidate identified using the Xbb tagger

- Model-independent discovery region
 - Use fully unsupervised variational recurrent neural network to tag X resonance
- HVT signal used as benchmark
- The most significant excess has a global significance of 1.47 σ.

Summary

		ATLAS Dibosor Status: June 2021	n Searches	- 95% CL E	xclusion	Limit	6		£ = (36.1 – 1	39) fb ⁻¹	ATLAS Prelimin $\sqrt{s} = 13$ T	iary eV
	Model	Channel [†]	Strategy*		Limit				- (,	Reference	(
Extra dimensions	Bulk RS ($k\pi r_c = 35$, $\Lambda_R = 3$ TeV)	$R \rightarrow WW, ZZ \rightarrow \nu\nu qq, \ell\nu qq, \ell\ell qq$	resolved, boosted		I	I	I		0.3-3.2 TeV		Eur. Phys. J. C 80 (2020)) 1165
	Bulk RS ($k\pi r_c = 35$, $\Lambda_R = 3$ TeV)	$R \rightarrow WW, ZZ \rightarrow qqqq$	boosted						1.3-3.0 TeV		JHEP 06 (2020) 04	2
	RS1 $(k/\overline{M}_{Pl} = 0.01)$	$G_{KK} ightarrow \gamma\gamma$	resolved					0.5-2.2	TeV		arXiv:2102.13405	
	RS1 $(k/\overline{M}_{Pl} = 0.05)$	$G_{KK} ightarrow \gamma\gamma$	resolved						0.5-3.9	TeV	arXiv:2102.13405	
	RS1 ($k/\overline{M}_{Pl} = 0.1$)	$G_{KK} ightarrow \gamma\gamma$	resolved						().5-4.5 TeV	arXiv:2102.13405	
	Bulk RS ($k/\overline{M}_{Pl} = 0.5$)	$G_{KK} \rightarrow WW \rightarrow ev\mu v$	resolved			0.2-0.75 T	εV				Eur. Phys. J. C 78 (201	8) 24
	Bulk RS ($k/\overline{M}_{Pl} = 1.0$)	$G_{KK} \rightarrow ZZ \rightarrow \ell \ell \ell \ell' \ell', \nu \nu \ell \ell$	resolved					0.6-1.75 TeV			Eur. Phys. J. C 81 (2021) 332
	Bulk RS ($k/\overline{M}_{Pl} = 1.0$)	$G_{KK} \rightarrow WW \rightarrow ev\mu v$	resolved				0.2-1.1	TeV			Eur. Phys. J. C 78 (201	8) 24
	Bulk RS ($k/\overline{M}_{Pl} = 1.0$)	$G_{KK} \rightarrow WW, ZZ \rightarrow \nu \nu q q, \ell \nu q q, \ell \ell q q$	resolved, boosted					0.3-2.0 Te\	2		Eur. Phys. J. C 80 (2020)) 1165
	Bulk RS ($k/\overline{M}_{Pl} = 1.0$)	$G_{KK} ightarrow WW, ZZ ightarrow qqqq$	boosted					1.3-1.8 TeV			JHEP 06 (2020) 042	2
	HVT ($g_F = -0.55, g_H = -0.56$)	$W' \to WZ \to \ell \nu \ell' \ell'$	resolved					0.25-2.2	6 TeV		Phys. Lett. B 787 (2018	3) 68
	HVT ($g_F = -0.55, g_H = -0.56$)	$W' \to WZ \to \nu \nu q q, \ell \nu q q, \ell \ell q q$	resolved, boosted					_	0.3-3.9	TeV	Eur. Phys. J. C 80 (2020)) 1165
	HVT ($g_F = -0.55, g_H = -0.56$)	$W' \to WH \to \ell \nu bb$	resolved, boosted						0.4-2.95 TeV		ATLAS-CONF-2021-0	026
	HVT ($g_F = -0.55, g_H = -0.56$)	W' ightarrow WZ ightarrow qqqq	boosted						1.3-3.4 TeV	I	JHEP 06 (2020) 042	2
	HVT ($g_F = -0.55, g_H = -0.56$)	W' ightarrow WH ightarrow qqbb	boosted						1.5-2.9 TeV		Phys. Rev. D 102 (2020)	112008
	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \to WW \to e \nu \mu \nu$	resolved					0.2-1.3 TeV			Eur. Phys. J. C 78 (201	8) 24
	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \to WW \to \ell \nu q q$	resolved, boosted					_	0.3-3.5 TeV	1	Eur. Phys. J. C 80 (2020)) 1165
	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \to ZH \to \nu\nu bb, \ell\ell bb$	resolved, boosted					_	0.3-2.9 TeV		ATLAS-CONF-2020-0	043
suos	HVT ($g_F = -0.55, g_H = -0.56$)	$Z' \rightarrow WW \rightarrow qqqq$	boosted						1.3-2.9 TeV		JHEP 06 (2020) 043	2
po;	HVT ($g_F = -0.55, g_H = -0.56$)	Z' ightarrow ZH ightarrow qqbb	boosted					1.5-2.2	TeV		Phys. Rev. D 102 (2020)	112008
agu	HVT ($g_F = 0.14, g_H = -2.9$)	$W' \to WZ \to \ell \nu \ell' \ell'$	resolved					0.8-	2.46 TeV		Phys. Lett. B 787 (2018	3) 68
Ga	HVT ($g_F = 0.14, g_H = -2.9$)	$W' \to WZ \to \nu \nu q q, \ell \nu q q, \ell \ell q q$	resolved, boosted					-	0.8	8-4.3 TeV	Eur. Phys. J. C 80 (2020)) 1165
	HVT ($g_F = 0.14, g_H = -2.9$)	$W' \to WH \to \ell \nu bb$	resolved, boosted						0.8-3.15 TeV		ATLAS-CONF-2021-0	026
	HVT ($g_F = 0.14, g_H = -2.9$)	W' ightarrow WZ ightarrow qqqq	boosted						1.3-3.6 Te	V	JHEP 06 (2020) 043	2
	HVT ($g_F = 0.14, g_H = -2.9$)	W' ightarrow WH ightarrow qqbb	boosted						1.5-3.2 TeV		Phys. Rev. D 102 (2020)	112008
	HVT ($g_F = 0.14, g_H = -2.9$)	$Z' \to WW \to \ell \nu q q$	resolved, boosted						0.8-3.9	TeV	Eur. Phys. J. C 80 (2020)) 1165
	HVT ($g_F = 0.14, g_H = -2.9$)	$Z' \to ZH \to \nu\nu bb, \ell\ell bb$	resolved, boosted						0.8-3.2 TeV		ATLAS-CONF-2020-0	943
	HVT ($g_F = 0.14, g_H = -2.9$)	$Z' \rightarrow WW \rightarrow qqqq$	boosted						1.3-3.1 TeV		JHEP 06 (2020) 04	2
	HVT ($g_F = 0.14, g_H = -2.9$)	Z' ightarrow ZH ightarrow qqbb	boosted		1				.5-2.65 TeV	1	Phys. Rev. D 102 (2020)	112008
				0.2	0.4	0.6	0.8	1	2 3	4 !	5	
$\sqrt{s} = 13 \text{ TeV}$ Excluded mass range [TeV]												

 Reviewed many ATLAS Run-2 searches with boson final states

- Jet reconstruction and boson tagging are essential
 - Several improvements developed and included in analyses
- Further developments on going for Run-3

[†]with $\ell = \mu$, e

*small-radius (large-radius) jets are used in resolved (boosted) events

ATL-PHYS-PUB-2021-018

Thanks for your attention

Combination of searches for resonant Higgs pair production

ATLAS-CONF-2021-052

- Combination of $b\overline{b} \ b\overline{b} + b\overline{b} \ \tau\tau + b\overline{b} \ \gamma\gamma$
- The largest excess is at $m_X = 1.1 \text{ TeV}$
 - local (global) significance of 3.2σ (2.1σ).

	$b\overline{b}\gamma\gamma$	$b\overline{b} au^+ au^-$	$b\overline{b}b\overline{b}$ resolved (boosted)
$\mathcal{B}(HH \to x\bar{x}y\bar{y})$	$2.6 \cdot 10^{-3}$	0.073	0.339
$\mathcal{L}_{int} \ [fb^{-1}]$	139	139	126 (139)
Discriminant	$m_{\gamma\gamma}$	MVA outputs	m _{HH}
Resonance mass (m_X) range [GeV]	251-1000	251-1600	251-1500 (900-3000)

23

Search for resonant Higgs pair production in bb bb channel

• Resolved channel (4 b-jets):

- Machine learning-based jet pairing algorithm
- Neural network-based background reweighting
- Boosted channel (2 large-R jets):
 - Variable radius track jets
 - Extended resonance mass range (to 5 TeV)

Phys. Rev. D 105 (2022) 092002

- Channel with largest BR for HH (34%)
- Backgrounds QCD multi-jet and ttbar
- Both channels use 3 regions in the Higgs candidate mass plane to extrapolate background in signal region with uncertainty

