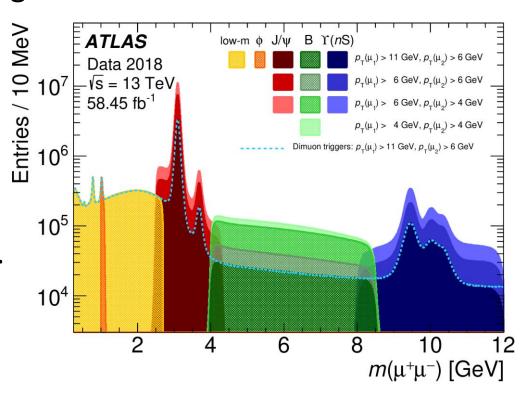


ATLAS Results on Weak Decays of B Mesons

Dr Andy Wharton – On Behalf of the ATLAS Collaboration.

HEP2023 – Valparaiso, Chile: 10th January, 2023

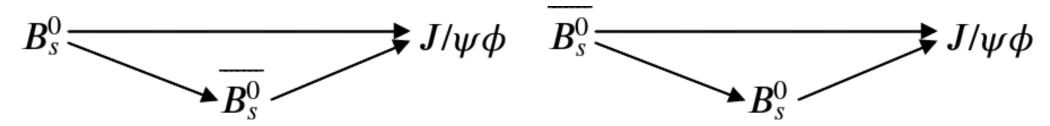
Introduction



- ATLAS has a rich and diverse physics program.
- Focus today on two b-physics results + future prospects:
 - CP-Violation in B_s \rightarrow J/ ψ ϕ decays, <u>Eur. Phys. J. C 81</u>, 342 (2021).
 - Run1 + 2015-2017
 - The rare decay $B_s \rightarrow \mu^+\mu^-$, <u>J. High Energ. Phys. **2019**</u>, 98 (2019).
 - Run1 + 2015-2016
 - Also <u>ATLAS-CONF-2020-049</u> for LHC combinations.
- Other public results can be found <u>here</u>...
- ...and talks here at HEP2023.

b-Physics in ATLAS

- 139 fb⁻¹ of pp collisions collected during the LHC's Run2.
 - + 26.9 fb⁻¹ during Run1.
 - > 2 Million bb pairs a second
- b-Physics studies focus mainly on:
 - Muonic states + full-reconstruction.
- Low-p_T (di-)muon triggers.
 - Vertex/Mass cuts for J/ψ-like triggers.
 - Tracks + cuts for 3/4/5 track signals.



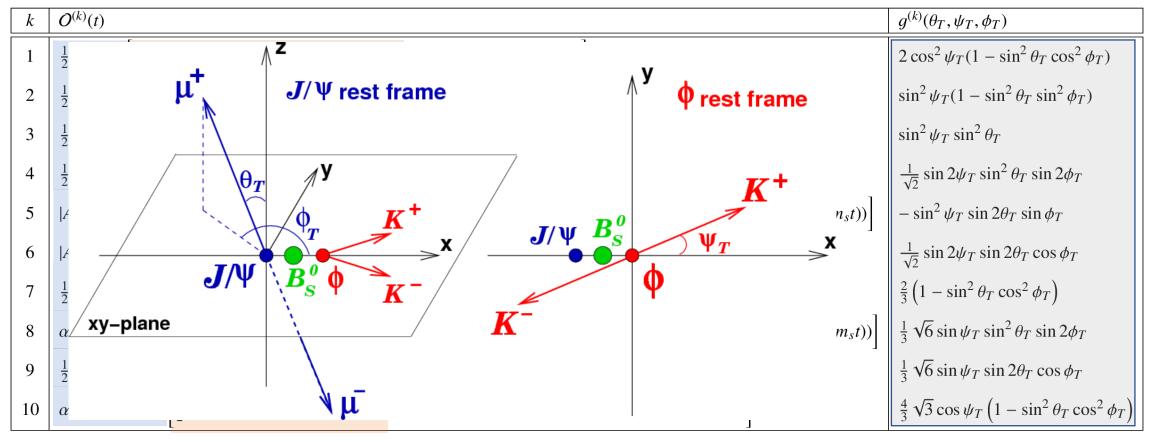
CP-Violation in $B_s \rightarrow J/\psi \phi$ Decays

CP-Violation in $B_s \rightarrow J/\psi \phi$ Decays

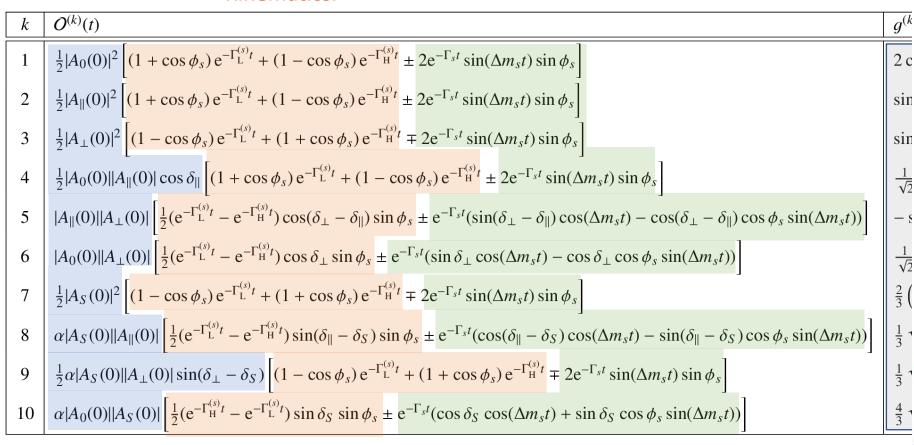
- Neutral meson oscillation + Decay → Interference + CP-Violation.
- Was (one of many) "Golden Channels" in b-physics for a long time...
 - NP in b \rightarrow ccs, colour singlets, colour octets, and many, many others!
- Focus now comparison of direct measurements vs global fits.
 - $\Phi_s \approx -2\beta_s = -0.03696^{+0.00072}_{-0.00082}$ rads [CKMFitter], if no NP in mixing.

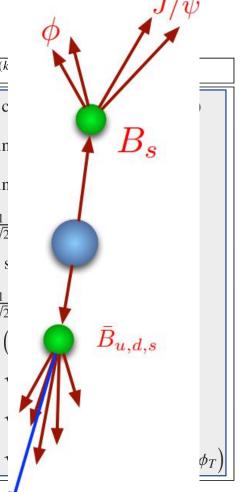
- Signal decay is pseudo-scalar → vector + vector...
 - Untangle CP-even/odd states with a time-dependent angular analysis.
- The end-state is $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$
 - Additional non-resonant KK contribution also fitted.
- Four decay amplitudes + interference → 10 term PDF:
 - Each with an amplitude, kinematic, flavour, and angular component.
 - Measure signal candidate lifetime + angles (+ errors).
 - Production flavour of the signal candidate.
 - Fit for:
 - Γ_s , $\Delta\Gamma_s$, Φ_s , 3 amplitudes + 3 phases for CP-even/odd states.
 - Fit other PDF parameters from public results.
 - ΔM_s from the <u>PDG</u>, λ_s (direct CP-violation) is fixed to 1.

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s\pm\mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t)-\cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t}) \sin(\delta_{\parallel} - \delta_S) \sin \phi_s \pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
9	$\frac{1}{2}\alpha A_S(0) A_{\perp}(0) \sin(\delta_{\perp} - \delta_S) \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s \pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$


Kinematics.

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\rm H}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\right]\pm e^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s\right]\pm e^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t)-\cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_L^{(s)}t} - e^{-\Gamma_H^{(s)}t}) \sin(\delta_{\parallel} - \delta_S) \sin \phi_s \pm e^{-\Gamma_S t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_S t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_S t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
9	$\frac{1}{2}\alpha A_S(0) A_{\perp}(0) \sin(\delta_{\perp} - \delta_S) \left[(1 - \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_S \pm e^{-\Gamma_S t} (\cos \delta_S \cos(\Delta m_S t) + \sin \delta_S \cos \phi_S \sin(\Delta m_S t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$


Kinematics.

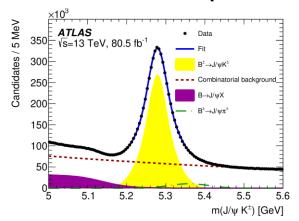

Angles.

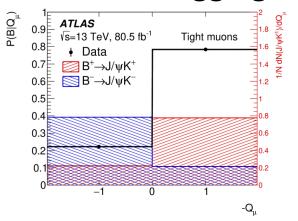
Kinematics.

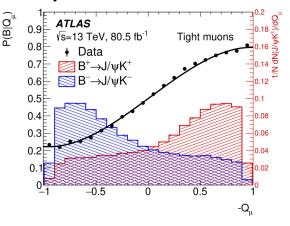
Kinematics.

Angles.

k	$O^{(k)}(t)$	$g^{(k)}(\theta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_H^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\perp}^{(s)}t}-e^{-\Gamma_{\parallel}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm e^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s\pm e^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t)-\cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_S(0) ^2 \left[(1 - \cos\phi_s) e^{-\Gamma_L^{(s)}t} + (1 + \cos\phi_s) e^{-\Gamma_H^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_S(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_L^{(s)}t} - e^{-\Gamma_H^{(s)}t}) \sin(\delta_{\parallel} - \delta_S) \sin\phi_S \pm e^{-\Gamma_S t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_S t) - \sin(\delta_{\parallel} - \delta_S) \cos\phi_S \sin(\Delta m_S t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (e^{-\Gamma_H^{(s)}t} - e^{-\Gamma_L^{(s)}t}) \sin \delta_S \sin \phi_s \pm e^{-\Gamma_S t} (\cos \delta_S \cos(\Delta m_S t) + \sin \delta_S \cos \phi_s \sin(\Delta m_S t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$


Flavour Tagging - 1




- Tag the signal candidates flavour from the pair-produced b-quark.
 - Looking for muons, electrons, or b-tagged jets.
 - Build a `cone charge`, Q_x , as sum of p_T weighted charges.

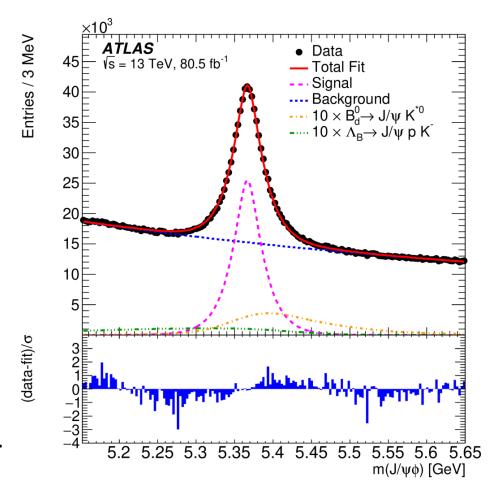
$$Q_{x} = \frac{\sum_{i} q_{i} \cdot p_{\pi i}^{\kappa}}{p_{\pi i}^{\kappa}}$$

• Calibrated/optimised on the self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel.

Flavour Tagging - 2

• From the cone charge, build per-candidate tag probability.

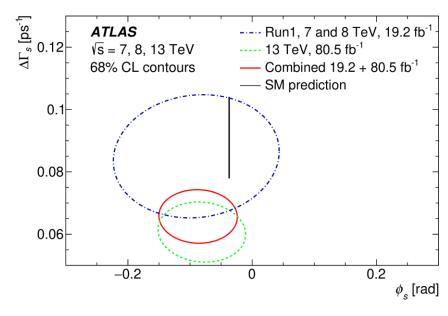
•
$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$


- Classify taggers by efficiency, dilution, and tagging power.
 - How often, how often right, how good over all...

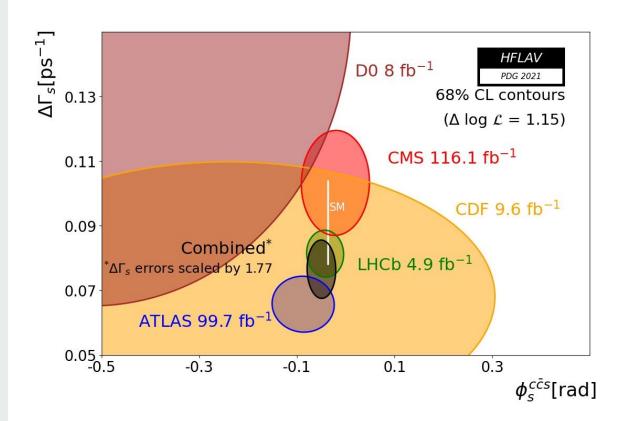
Tag method	$\epsilon_{\scriptscriptstyle X}$ [%]	D_x [%]	T_{x} [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

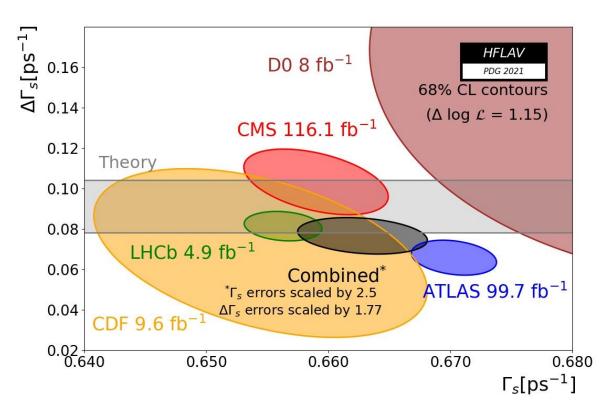
Fits to Data

- Fit is performed using a 10D UML:
 - Observables:
 - Mass, lifetime, angles.
 - Conditional observables:
 - Trigger weight, measurement errors, Q_x
- Fit PDFs for:
 - Signal
 - Combinatorial background
 - Peaking backgrounds (B_d and Λ_b)
 - Punzi terms.
 - Model differences for signal/background.

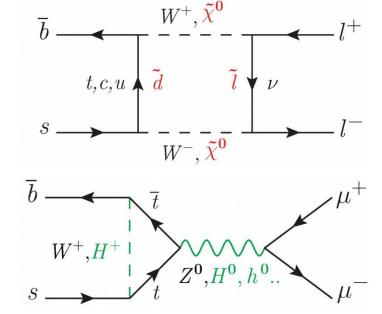


Fit Results


- Compatible with SM predictions.
 - Some tension in $\Delta\Gamma_s$, second solution in δ_{\parallel} δ_{\perp} plane.
- Dominant systematics from flavour tagging.


Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.081	0.041	0.022	
$\Delta\Gamma_s$ [ps ⁻¹]	0.0607	0.0047	0.0043	
Γ_s [ps ⁻¹]	0.6687	0.0015	0.0022	
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023 0.0038	
$ A_0(0) ^2$	0.5131	0.0013		
$ A_S(0) ^2$	0.0321	0.0033	0.0046	
$\delta_{\perp} - \delta_{S}$ [rad]	-0.25	0.05	0.04	
	Solution (a)			
δ_{\perp} [rad]	3.12	0.11	0.06	
δ_{\parallel} [rad]	3.35	0.05	0.09	
	Solution (b)			
δ_{\perp} [rad]	2.91	0.11	0.06	
$_{-}$ δ_{\parallel} [rad]	2.94	0.05	0.09	

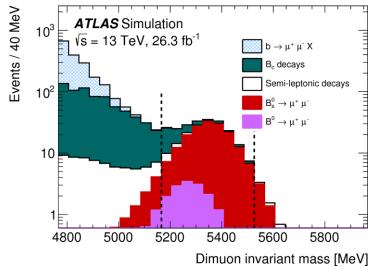
Comparisons With Other Experiments

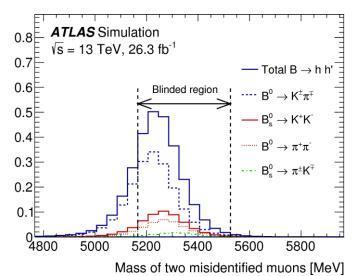


The Rare Decay $B_s \rightarrow \mu^+\mu^-$

The Rare Decay $B_s \rightarrow \mu^+\mu^-$

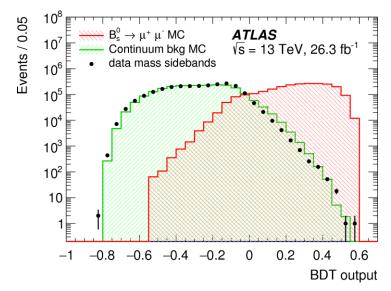
- FCNC decays are heavily suppressed in the SM.
 - Loop and/or box diagrams, and helicity suppression.
- Typical SM branching ratios, $Br \sim 10^{-9}$
 - Significant enhancements possible with NP.
- Aim to measure $Br(B_s \to \mu^+\mu^-)$ and $Br(B_d \to \mu^+\mu^-)$
 - Measure branching ratios relative to $B^{\pm} \rightarrow J/\psi K^{\pm}$
 - Use $B_s \rightarrow J/\psi \phi$ as a control channel.
 - Extract yields from UML mass spectra.

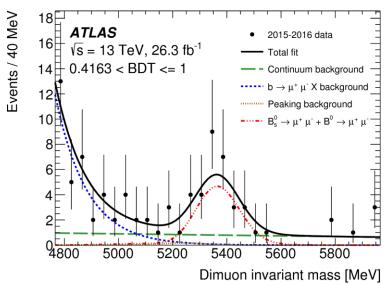



- Significant overlap between B_d and B_s signals due to mass resolution.
 - Many interesting backgrounds...

Background Modelling

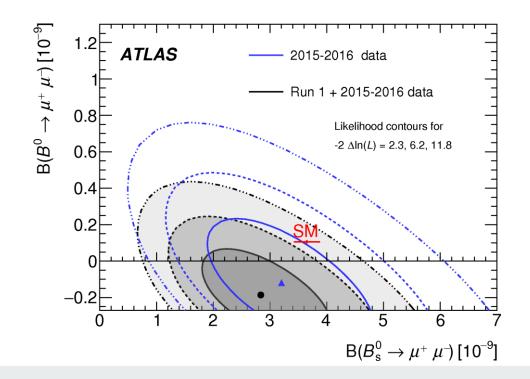
- Misreconstructed Backgrounds:
 - Same Side b \rightarrow c μ X \rightarrow s(d) μ X'
 - Same Vertex B $\rightarrow \mu^+\mu^-X$
 - Incorrect muon ID − B → μhX
- Peaking backgrounds:
 - Mostly B \rightarrow hh with two incorrect muon IDs.
- Continuum background:
 - Combinatorics of random μμ, μh, and hh pairs.
 - Suppressed through a BDT.





BDTs and Signal Extraction

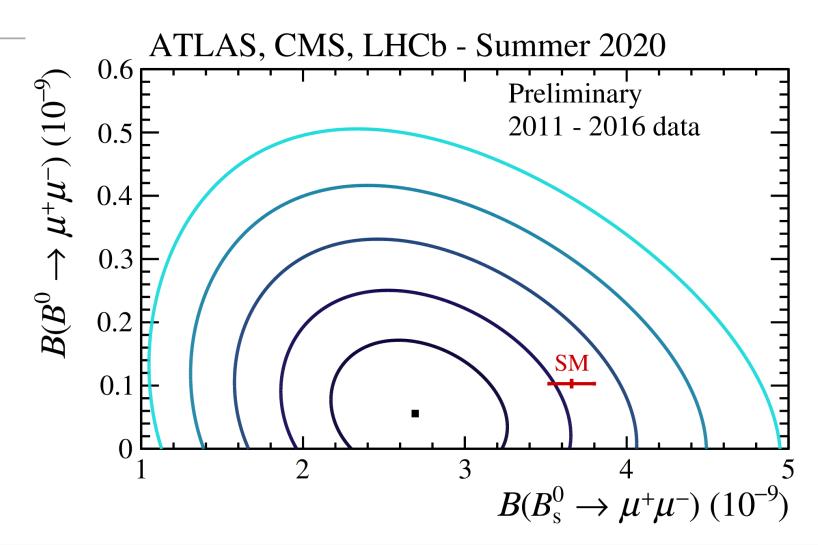
- BDTs trained to reject continuum background.
 - 15 BDT inputs Vertex, Muon, and Event.
 - Signal region is divided into 4 bins of constant signal efficiency.
 - Validated in reference and control channels.



ATLAS Results

Channel	SM ATLAS 2015 + 2016		ATLAS Run1 + 2015 + 2016	
$Br(B_s \rightarrow \mu^+\mu^-)$	$(3.66 \pm 0.14) \times 10^{-9}$	$(3.2^{+1.1}_{-1.0}) \times 10^{-9}$	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	
$Br(B_d \rightarrow \mu^+\mu^-)$	$(1.03 \pm 0.15) \times 10^{-10}$	$< 4.3 \times 10^{-10}$ @ 95% CL	$< 2.1 \times 10^{-10}$ @ 95% CL	

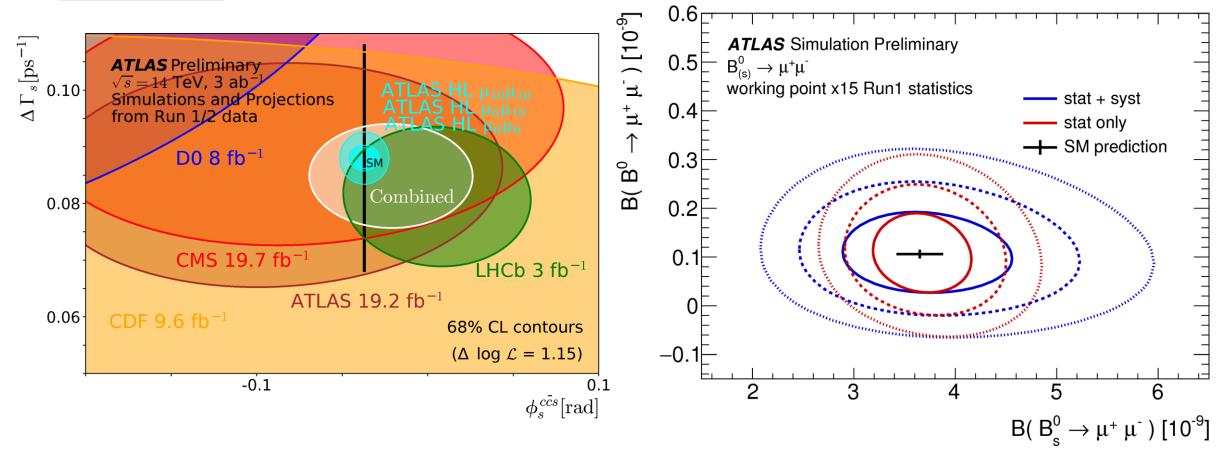
• Event Count:


•
$$N_s = 80 \pm 22$$

•
$$N_d = -12 \pm 20$$

- Compatible with SM at 2.4σ
- Statistically limited.
 - Though significant systematic effects from the di-muon mass fitting methodology.

LHC Combinations



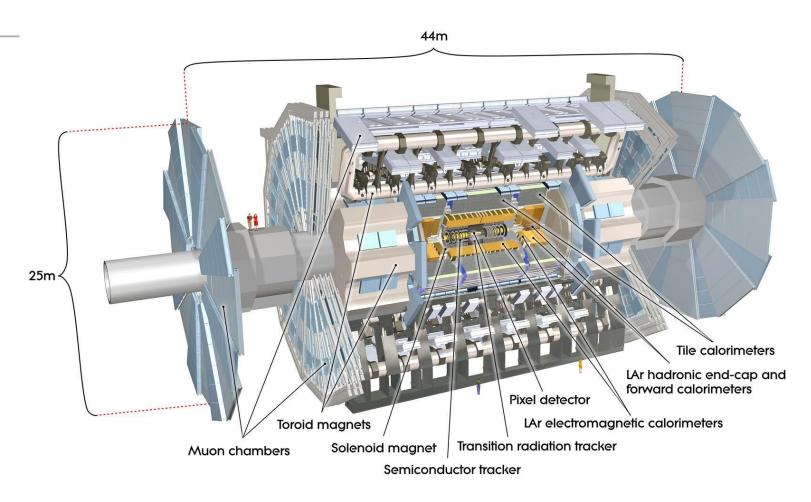
Future Prospects

HL-LHC Prospects for $B_s \rightarrow J/\psi \ \phi$ and $B_s \rightarrow \mu^+\mu^-$

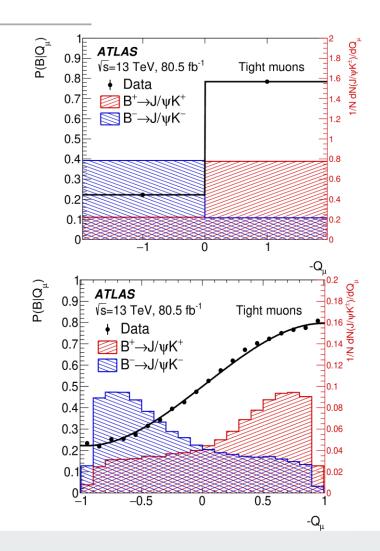
24

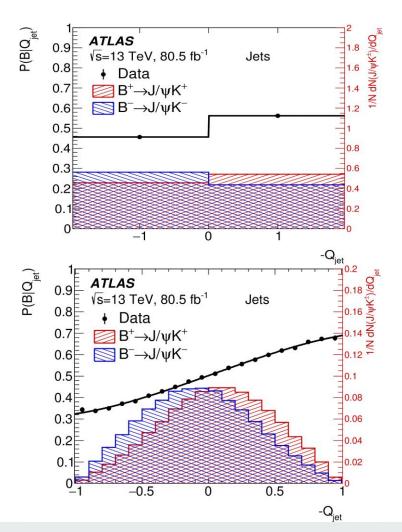
[Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC, Addendum]

Summary


- ATLAS is producing competitive results.
 - And actively collaborating with our LHC partners!
- $B_s \rightarrow J/\psi \phi$ remains a solid channel for NP searches.
 - But nothing interesting yet!
- ATLAS's $B_s \to \mu^+ \mu^-$ result is broadly consistent with SM predictions.
- All of these analyses are currently working toward full Run2 results.
- We are well prepared for Run3 data.

Backup

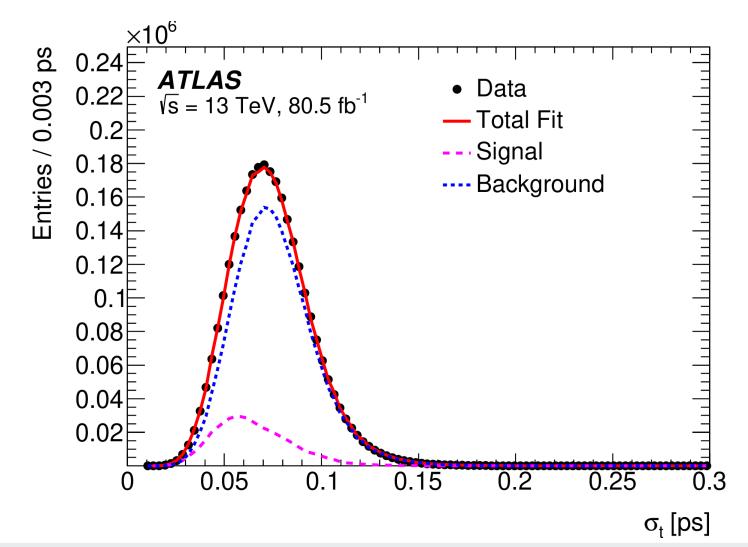

The ATLAS Detector



Flavour Tagging

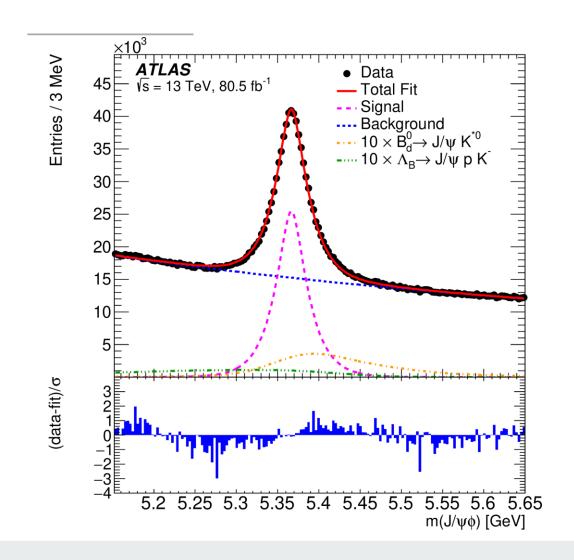
Fit Models - $B_s \rightarrow J/\psi \phi$

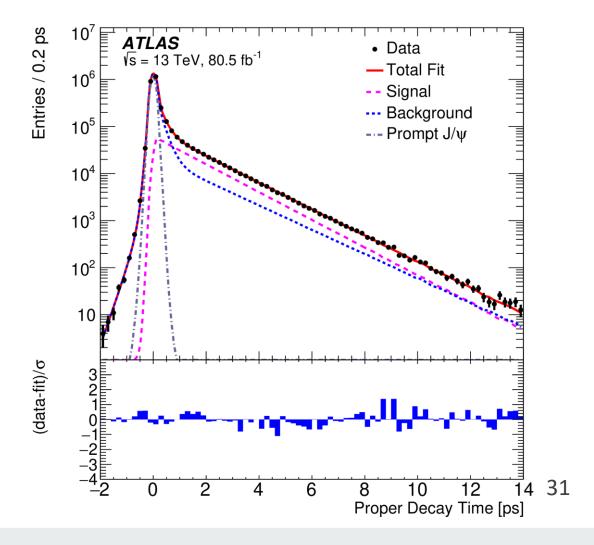
$$\begin{split} \ln \mathcal{L} = & \sum_{i=1}^{N} w_i \cdot \ln[f_{\mathbf{S}} \cdot \mathcal{F}_{\mathbf{S}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathbf{T}_i}) \\ & + f_{\mathbf{S}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathbf{T}_i}) \\ & + f_{\mathbf{S}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathbf{T}_i}) \\ & + (1 - f_{\mathbf{S}} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathbf{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{\mathbf{T}_i})], \end{split}$$


$$\mathcal{F}_{S}(m_{i}, t_{i}, \sigma_{m_{i}}, \sigma_{t_{i}}, \Omega_{i}, P_{i}(B|Q_{x}), p_{T_{i}})$$

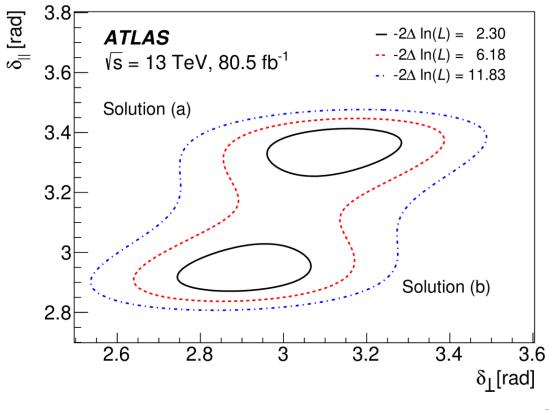
$$= P_{S}(m_{i}|\sigma_{m_{i}}) \cdot P_{S}(\sigma_{m_{i}}|p_{T_{i}}) \cdot P_{S}(t_{i}, \Omega_{i}|\sigma_{t_{i}}, P_{i}(B|Q_{x}))$$

$$\cdot P_{S}(\sigma_{t_{i}}|p_{T_{i}}) \cdot P_{S}(P_{i}(B|Q_{x})) \cdot A(\Omega_{i}, p_{T_{i}}) \cdot P_{S}(p_{T_{i}}).$$


Fit Projections - $B_s \rightarrow J/\psi \phi$



Fit Projections - $B_s \rightarrow J/\psi \phi$



Results - $B_s \rightarrow J/\psi \phi$

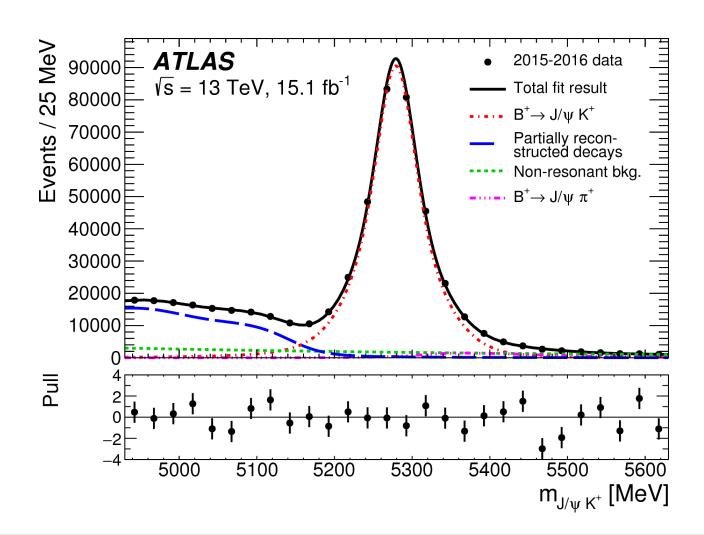
Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.081	0.041	0.022	
$\Delta\Gamma_s$ [ps ⁻¹]	0.0607	0.0047	0.0043	
Γ_s [ps ⁻¹]	0.6687	0.0015	0.0022	
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023 0.0038	
$ A_0(0) ^2$	0.5131	0.0013		
$ A_S(0) ^2$	0.0321	0.0033	0.0046	
$\delta_{\perp} - \delta_{S}$ [rad]	-0.25	0.05	0.04	
	Solution (a)			
δ_{\perp} [rad]	3.12	0.11	0.06	
δ_{\parallel} [rad]	3.35	0.05	0.09	
1	Solution (b)			
δ_{\perp} [rad]	2.91	0.11	0.06	
δ_{\parallel} [rad]	2.94	0.05	0.09	

Results - $B_s \rightarrow J/\psi \phi$

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_{S}$
$\phi_{\scriptscriptstyle S}$	-0.080	0.017	-0.003	-0.004	-0.007	0.007	0.004	-0.007
$\Delta\Gamma$	1	-0.586	0.090	0.095	0.051	0.032	0.005	0.020
Γ_s		1	-0.125	-0.045	0.080	-0.086	-0.023	0.015
$ A_{ }(0) ^2$			1	-0.341	-0.172	0.522	0.133	-0.052
$ A_0(0) ^2$				1	0.276	-0.103	-0.034	0.070
$ A_S(0) ^2$					1	-0.362	-0.118	0.244
δ_{\parallel}						1	0.254	-0.085
$\\delta_\perp$							1	0.001

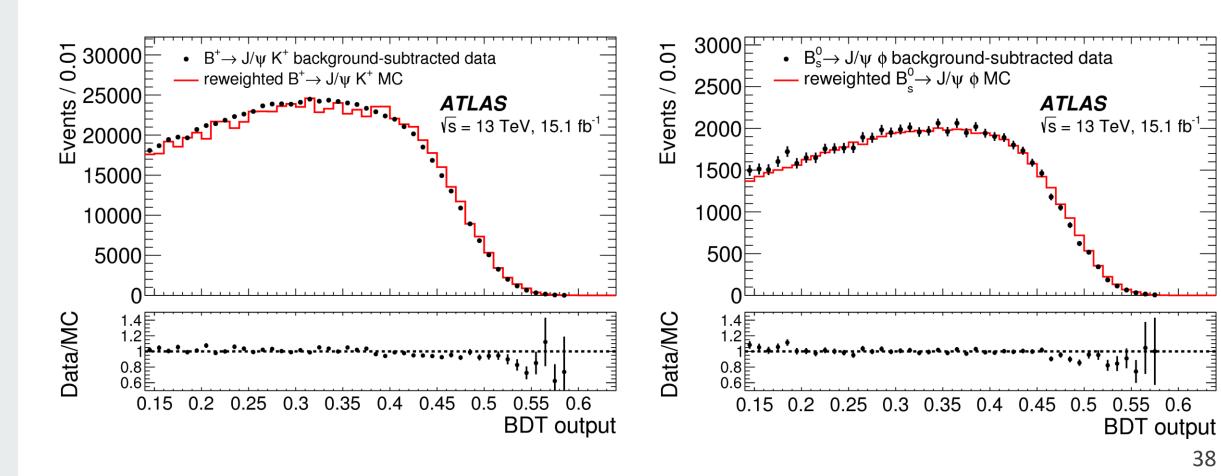
Systematics - $B_s \rightarrow J/\psi \phi$

	ϕ_s	$\Delta\Gamma_{s}$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_{S}$
		$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	[10^{-3} rad]	$[10^{-3} \text{ rad}]$	$0_{\perp} - 0_{S}$ [10 ⁻³ rad]
	$[10^{-3} \text{ rad}]$	[10 ° ps °]	[10 ° ps -]	[10 5]	[10 5]	[10]	[10 rad]	[10 rad]	[10 s rad]
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	0.2	0.4	0.8	0.9	17	8.6	6.0
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B_d^0	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	22	4.3	2.2	2.3	3.8	4.6	55	88	39


Branching Ratios - $B_s \rightarrow \mu^+\mu^-$

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = \frac{N_{d(s)}}{\varepsilon_{\mu^{+}\mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}}$$
$$= N_{d(s)} \frac{\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})}{\mathcal{D}_{ref}} \times \frac{f_{u}}{f_{d(s)}},$$

$B^{\pm} \rightarrow J/\psi K^{\pm} - B_s \rightarrow \mu^{+}\mu^{-}$


BDT - $B_s \rightarrow \mu^+ \mu^-$

Variable	Description
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_1}^B$.
$\chi^2_{\text{PV,DV}}$ xy	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_T \cdot \Sigma_{\overrightarrow{\Delta x}_T}^{-1} \cdot \overrightarrow{\Delta x}_T$, where $\Sigma_{\overrightarrow{\Delta x}_T}$ is the covariance matrix.
$\Delta R_{ m flight}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$
$ \alpha_{\mathrm{2D}} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.
L_{xy}	Projection of $\overrightarrow{\Delta x}_T$ along the direction of \overrightarrow{p}_T^B : $(\overrightarrow{\Delta x}_T \cdot \overrightarrow{p_T}^B)/ \overrightarrow{p_T}^B $.
IP_B^{3D}	Three-dimensional impact parameter of the B candidate to the associated PV.
$\mathrm{DOCA}_{\mu\mu}$	Distance of closest approach (DOCA) of the two tracks forming the B candidate (three-dimensional).
$\Delta\phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\text{max}}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the <i>B</i> candidate, in the transverse plane.
$P_{ m L}^{ m min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.
I _{0.7}	Isolation variable defined as ratio of $ \overrightarrow{p_T}^B $ to the sum of $ \overrightarrow{p_T}^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the B candidate. Only tracks matched to the same PV as the B candidate are considered.
$N_{ m xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the B candidate with $\ln(\chi^2_{\text{xtrk,DV}}) < 1$. Only tracks matched to the same PV as the B candidate are considered.
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.

BDT - $B_s \rightarrow \mu^+\mu^-$

Systematics - $B_s \rightarrow \mu^+\mu^-$

Source	Contribution [%]
Statistical	0.8
BDT input variables	3.2
Kaon tracking efficiency	1.5
Muon trigger and reconstruction	1.0
Kinematic reweighting (DDW)	0.8
Pile-up reweighting	0.6

Source	B_s^0 [%]	B ⁰ [%]
f_s/f_d	5.1	-
B^+ yield	4.8	4.8
$R_{arepsilon}$	4.1	4.1
$\mathcal{B}(B^+ \to J/\psi \ K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$	2.9	2.9
Fit systematic uncertainties	8.7	65
Stat. uncertainty (from likelihood est.)	27	150