

The sPHENIX experiment at RHIC

Sebastian Tapia Araya Universidad Técnica Federico Santa Maria for sPHENIX collaboration

13 Jan 2023

What is sPHENIX?

- sPHENIX will complete at BNL in the PHENIX experimental hall
- sPHENIX is the first new detector at any hadron collider in over a decade!
- sPHENIX has unique, purpose-built capabilities never before deployed at RHIC

...to complete the scientific journey started at RHIC over twenty years ago!

sPHENIX physics program

`,р_{т,2}

р_{т,1}

Jet structure

vary momentum/angular scale of probe

> transverse-momentum, and cold nuclear effects

The Goal: Probe the inner workings of Quark-Gluon-Plasma

sPHENIX Tracking system

Vertexing:

- MAPS-based micro-VerTeX detector (MVTX)
- 3-layers Monolithic Active Pixel Sensors (MAPS) covering 2.5-4 cm radius

Timing:

- Intermediate Silicon Tracker (INTT)
- 4-layers (7-10 cm radius)
- Fast O(100ns) integration time

Momentum:

- Time Projection Chamber (TPC)
- 48-layers (30-78cm radius)
- Δp/p~1% at 5 GeV/c
- R- ϕ resolution ~ 150 μ m

sPHENIX Tracking system

Calibration:

- **EMCAL**

Good efficiency and momentum resolution by combining MVTX and TPC

• TPC Outer Tracker (TPOT)

• 8 modules of Micromegas inserted between TPC and

sPHENIX Calorimeter system

- HCAL and EMCAL sampling calorimeters, covering 2π in azimuth, $|\eta| < 1.1$, 15kHz read-out rate
- First mid-rapidity hadronic calorimeter at RHIC, 0.1x0.1 segmentation
- Allows to capture full jet energy
 - reduce fragmentation bias and improve resolution
- Allows systematic comparison of particle flow vs calo vs track jets
- 15%/√E or better for photons and electrons
- Allows unbiased jet trigger in p+p
 - Unbiased Au+Au by not using a trigger

sPHENIX Calorimeter system == Unbiased jet trigger in p+p

Event Characterization

Min. Bias Detector (MBD)

- Covers 3.51 < | eta | < 4.61
- Reuse PHENIX Beam-Beam Counter
- 128 channels of 3 cm thick quartz radiator on mesh dynode PMT
- Timing resolution: 120 ps

sPHENIX Event Plane Detector (sEPD) • 2 wheels; $2.0 < |\eta| < 4.9$ • Scintillator plastic (1.2 cm thick), embedded WLS fibers

Event plane measurement for jet, heavy flavor, and small systems flow!

SuperConducting Magnet

- BaBar solenoid installed is sPHENIX IR (October 2021)
- Successfully ramped to full current in position
- Field mapped by expert team from CERN

(October 2021) osition {N

sPHENIX run plan

2015 20)16	2017	2018	
sPHENIX	Î DOE C	D-0	t DOE CD-	-1/3
science collaboration	"Missi	on need"	Cost, sched	
CUIIADUIALIUII	appioval pulchas			

sPHENIX run plan

20	15	201	.6	2017	2018	2019	2020	2021	2022	2023
										X
sPH scie colla	ENIX nce aboratio	Î On	f DOE C "Missi appro	CD-0 ion need val	f DOE CD-1/ Cost, sched purchase a	'3A dule, advar pproval	nce	Today Installation commissio	/ and ning	first beam expected i late Spring
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.				
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm	Extensive	3-year data ta	king startin	ig in a few mor
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ^{−1}	4.5 (6.9) nb ⁻¹	Year-1: co	ommissioning a	and first phy	ysics
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz] 4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]	45 (62) pb ⁻¹	Year-2: p- cold QCD	+p and p+Au rι physics	uns for heav	vy-ion reference
2024	p [↑] +Au	200		5	0.003 pb ⁻¹ [5 kHz] 0.01 pb ⁻¹ [10%-str]	0.11 pb ⁻¹	Year-3: ve	ery large Au+Aι	ı dataset (1	45B events in [.]
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹				

RHIC and LHC

- sPHENIX enables expanded kinematic ranges for many observable
- —> allows for overlap with LHC
- Some measurements for first time at RHIC!

sphenix physics

sPHENIX will meet up with the LHC kinematic range on the high end and push low in p_T

 $R_{AA} = \frac{N_{AA}}{T_{AA}\sigma_{nn}} \neq 1$; Nuclear modification

Photon-Jet correlations

Momentum imbalance:

$$x_{j\gamma} = p_T^{jet} / p_T^{\gamma}$$

Z/γ-tagged jets are useful for two reasons: 1) Constraining initial the jet momentum

E/W bosons do not interact strongly with QGP
Different than di-jets where both jets are quenched

$$x_{j\gamma} = p_T^{jet} / p_T^{\gamma}$$

- Jets loss more energy in central collisions
- p_T > 60 GeV

Photon-Jet correlations

Jet substructure

Groomed momentum fraction

 $min(p_{T,1}, p_{T,2})$ $z_g =$ $p_{T,1} + p_{T,2}$

ALI-PUB-521472

models

 No significant modification • Mostly consistent with

Jet substructure

Groomed momentum fraction

 $min(p_{T,1}, p_{T,2})$ $z_g =$ $p_{T,1} + p_{T,2}$

ALI-PUB-521472

models

 No significant modification • Mostly consistent with

sPHENIX projection

- Study evolution of parton shower
 - Lower p_T than LHC

b-tagged Jets

Mass dependence expected due to "dead-cone effect"

Radiation is suppressed in $\theta < m/E$

- *b*-jet found to be **less** suppressed than inclusive jets in central collisions
- But very high p_T for dead-cone effect to play a relevant role

b-tagged Jets

Mass dependence expected due to "dead-cone effect"

Radiation is suppressed in $\theta < m/E$

- *b*-jet found to be **less** suppressed than inclusive jets in central collisions
- But very high p_T for dead-cone lacksquareeffect to play a relevant role

 $B_{\rm AA}$

- Completely new channel at RHIC - unique sPHENIX capability
- pT > 15 GeV, closer to bmass, making the mass effect more relevant

b-tagged Jets

Mass dependence expected due to "dead-cone effect"

Large parton mass

Small parton mass

sPHENIX projection $R_{\rm AA}$ SPHENIX BUP 2022 *b*-jet Anti-k₋ R=0.4, 0-10% Au+Au, Year 1-3 p+p: 62pb⁻¹ samp., 60% Eff., 40% Pur. Au+Au: 21nb⁻¹ rec., 40% Eff., 40% Pur. 0.8 0.6 0.4 LIDO, arXiv:2008.07622 [nucl-th] 0.2 pQCD, Phys.Lett. B726 (2013) 251-256 = 2.0 25 30 15 20

Radiation is suppressed in $\theta < m/E$

- Completely new channel at RHIC - unique sPHENIX capability
- p_T > 15 GeV

 Sufficiently large yield to look at b-jet structure, e.g. ratio of z in Au+Au/p+p

$$z_g = \frac{\min(p_{T,1}, p_T)}{p_{T,1} + p_T}$$

Jets: open questions from LHC

Projected R(0.5)/R (0.2) double ratio in 0-10% events

Jets: open questions from LHC

Correlation of jets with the event planes, ψ

• Sensitive to path length energy loss

Jets: open questions from LHC

Correlation of jets with the event planes, ψ

• Sensitive to path length energy loss

 key info on shape modification and geometry dependence **Difficult to measure at LHC in pT < 50 GeV region where effects may be large**

Upsilon physics

Excellent mass resolution will allow three Y states separation

Upsilon physics

- Excellent mass resolution will allow three Y states separation

• Chance for clean measurement of $\Upsilon(3S)$ suppression -> Test of models

Cold QCD Physics

 Study of nuclear modifications using **unpolarized** p+Au measurements

100

Cold QCD Physics

- 28th Feb. 2022

November, 2022 EMCal sectors installed inside IHCal

化加速增加公司

NIVIX has a 2mm clearance to the beam pipe

Thank you!!

Beampipe

- sPHENIX beampipe shipped to California for work
- Lost in warehouse fire in 2022!
- STAR had a spare beampipe that is in good condition and is compatible with sPHENIX design.

breaks out at Lancaster facility

One person was sent to the hospital with a minor burn injury, though it's unclear if he or she was a UPS worker.

sPHENIX detector

15 kHz calo trigger + 10% streaming DAQ 10 GB/s data logging

Centrality

Centrality, a proxy for impact parameter Central collisions ==> larger volume of QGP ==> more suppression

