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Outline: Development and deployment of AI/ML system for calibration and control

GlueX detector located in Hall D at Jefferson Lab, VA

Photon
Beam

• Focused on GlueX Central Drift Chamber (CDC)
• Modular system could be applied to other detectors

• GlueX: meson photoproduction experiment, 
searching for exotic hybrids

https://doi.org/10.1016/j.nima.2020.164807
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GlueX Central Drift Chamber (CDC) – charged particle tracking and identification

• 1.5m long x 1.2m diameter cylinder; central hole for beam, target and start counter scintillators

• 3522 anode wires at 2125V inside 1.6cm diameter straws

• Ar/CO2 gas mix, approx. 30 Pa above atmospheric pressure

• Used for tracking and PID – measures drift time and deposited charge

NIM A962 (2020) 163727

https://doi.org/10.1016/j.nima.2020.163727
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• CDC gain varies +/- 15% with gas density and also with hit rate (stable within run period)

• Runs limited to 2h or less – pressure alarm asks for new run, could be 30 mins when weather front is passing over
• Data calibrated after the run period ends, iterative, coordinated with other subsystems, takes months to complete

• HV could be adjusted for constant gain.  Could we do this with AI/ML?  What would be the effect on drift times?
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Atmospheric pressure and CDC dE/dx
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• Drift time to distance conversion uses a table of ideal drift times simulated for standard pressure and nominal HV 
2125V (GARFIELD).  Calibration accounts for imperfect straws and pressure.

• Ideal drift times are at 2125V and 760mmHg

• Simulated drift times at pressure extremes
for fixed HV 2125V and HV tuned for constant gain.

• Plot shows expected – ideal drift time vs drift radius
Dashed lines: 2125V
Solid lines: tuned HV

• Drift time differences are small

• Most hits are at small drift radius (geometry)

• Differences for tuned HV <  differences for 2125V

• Tuned HV should improve the position resolution slightly
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Evaluating impact of tuned HV on drift times
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https://garfield.web.cern.ch/garfield/
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Strategy for ML to control the CDC for stable gain and quicker calibration

Atmospheric pressure

Hit rate (HVB current) CDC HVML CDC gainGain
Calibration 

Factors
Temperature

• Train ML model to predict GCF from EPICS data + existing calibrations

Experimental Physics Industrial Controls System

Logs pressure, temperature, HVB current

Logged continuously since 2016

• Extract new measurements from EPICS at the start of each run

• Calibrate without reconstruction or dE/dx  (fine-tune later)
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https://epics.anl.gov/
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ML technique: the Gaussian Process model

• 3 features: P, T, HVB current

• 1 target: Gain Correction Factor (GCF)

• 601 runs, 536 from 2020 and 65 from 2021

• 80 / 20 train test split

• Pressure balanced for low, medium and high pressure

• GP calculates PDF over admissible functions that fit the data

• GP provides the standard deviation – use this for UQ

• Used a popular GP kernel: Radial Basis Function + White

• Compared isotropic (1 length scale) and 

anisotropic (length scale per input variable) kernels

Validation of uncertainty quantification (UQ)

Our goal was better than a 5% error
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Deployment 1 of 4 – Operational testing during PrimEx Nov 2021

No AI Empty target, no AI No AI ET, No AIET

AI-tuned HV was rounded to the nearest 5V. GCFs were obtained from dE/dx later on. The AI was not used for some runs.

HV tuned HV tuned HV tuned HV tuned
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Deployment 2 of 4 – testing autonomous operation with cosmic rays

Fixed HV Tuned HV• CDC HVBs sorted into 2 groups
• Fixed HV
• Tuned HV

• RoboCDC software developed
• Harvested EPICS, ran ML, adjusted HV, logged its actions
• Autonomously, every 5 minutes

• Collected data for 2 weeks

• Hoped to see ML-tuned side’s gains stablized

End-on view of the CDC wire locations



Naomi Jarvis  – ML CDC  – HEP2023  – 10

Deployment 2 of 4 – testing autonomous operation with cosmic rays
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Deployment 2 of 4 – testing autonomous operation with cosmic rays
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RoboCDC: Integrating AI/ML into the control system

• RoboCDC is modular and flexible – experts can update model on demand

• Experts configure ideal GCF at start of experiment

• Shift crew has one on/off button for RoboCDC
• DAQ calls RoboCDC at start of each run
• RoboCDC gets EPICS data, runs ML and sets HV

• Actions are logged and graphed
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RoboCDC: Integrating AI/ML into the control system

• RoboCDC is modular and flexible – experts can update model on demand

• Experts configure ideal GCF at start of experiment

• Shift crew has one on/off button for RoboCDC
• DAQ calls RoboCDC at start of each run
• RoboCDC gets EPICS data, runs ML and sets HV

• Actions are logged and graphed
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Deployment 3 of 4 – Charged Pion Polarizability May-June 2022

• RoboCDC used automatically at the start of each 2h run

• Used recommended HV if std deviation ≤ 3% ideal GCF
• Otherwise used the closest ‘confident’ HV 

in Euclidean distance on the uncertainty mesh

• Reverted to 2125V for empty target runs

• Low stakes – CDC not critical for CPP 

• Unusual running conditions 
• different target in different location
• low beam current

HV

Temp (K)

HV for GCF with 𝜎 ≤ 0.7%

Temp (K)

PressureHVB current (uA)
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Deployment 3 of 4 – Charged Pion Polarizability May-June 2022

• RoboCDC used automatically at the start of each 2h run

• Used recommended HV if std deviation ≤ 3% ideal GCF
• Otherwise used the closest ‘confident’ HV 

in Euclidean distance on the uncertainty mesh

• Reverted to 2125V for empty target runs

• Low stakes – CDC not critical for CPP 

• Unusual running conditions 
• different target in different location
• low beam current

HV for GCF with 𝜎 ≤ 3% HV

HVB current (uA)

Temp (K)

Pressure
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Deployment 3 of 4 – Charged Pion Polarizability May-June 2022

• RoboCDC used automatically at the start of each 2h run

• Used recommended HV if std deviation ≤ 3% ideal GCF
• Otherwise used the closest ‘confident’ HV 

in Euclidean distance on the uncertainty mesh

• Reverted to 2125V for empty target runs

• Low stakes – CDC not critical for CPP 

• Unusual running conditions 
• different target in different location
• low beam current

HV for GCF with 𝜎 ≤ 5% HV

Temp (K)

HVB current (uA)

Temp (K)

Pressure
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Deployment 3 of 4 – Charged Pion Polarizability May-June 2022

• Preliminary results show gain and pressure stability.  
• Y-axis range of plots set to usual range for pressure and GCF with fixed HV

GCF

Pressure
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Deployment 4 of 4 – PrimEx-η June-Dec 2022

• RoboCDC used automatically at the start of each 2h run

• Used recommended HV 

• if std deviation ≤ 3% ideal GCF
• if the target status in EPICS is ‘full and ready’

• Otherwise used 2125V to expand our training dataset.  
• Possibility of automatic data collection, retraining, redeployment in the future.
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Deployment 4 of 4 – PrimEx-η June-Dec 2022

• GCF obtained from dE/dx after the run
• Preliminary results show GCF predominantly within 5% of ideal value for runs with tuned HV
• Plot of GCF/ideal for tuned HV and fixed HV also shows pressure/temperature

Tuned HV
Fixed HV
Pressure/Temperature
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Development chart

Run period Experiment Training data for GP Operation

Oct 2021 PrimEx-η GlueX 2020 Shift crew ran script
HV set in 5V steps

Feb 2022 Cosmics GlueX 2020 + PrimEx 2021 RoboCDC - autonomous 
operation
HV set in 1V steps

May 2022 CPP GlueX 2020 + PrimEx 2021 RoboCDC
integrated into control system

Oct-Dec 2022 PrimEx-η GlueX 2020 + PrimEx 2021 Auto-2125 for UQ
Auto-2125 for ET

Jan-Mar 2023 GlueX Gluex 2020 + PrimEx 2021
+ GlueX 2018?

Auto-2125 if not enough beam in 
30s before start of run
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Summary

• Trained a Gaussian Process model with drift chamber environmental values – pressure, gas temperature, HVB current.

• Developed control software RoboCDC; now integrated into standard running.  
• No special action required from shift crew.

• Gained practical experience from 4 sessions in 2021-2022.   
• Results look good: gain stable within 5%.

• Using uncertainty quantification to determine when to switch off gain-stabilization and collect more training data.

• RoboCDC will be used for GlueX runs later this month.

• The modular control software could easily be adapted for other detector systems.
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