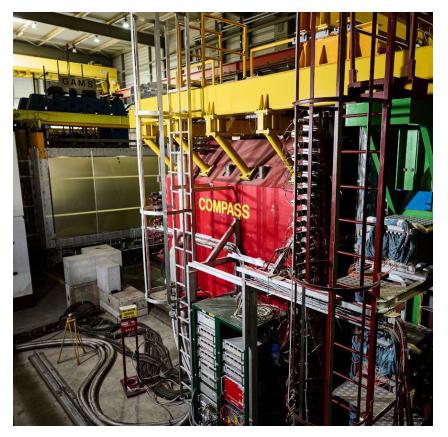


COMPASS physics programme: highligts and recent results

Fulvio Tessarotto (INFN. – Trieste) on behalf of the COMPASS Collaboration

The COMPASS Experiment at SPS


Spectroscopy

Longitudinal polarisation measurements

Trnsversity and TMD-dependent effects

Drell-Yan measurements

DVCS and DVMP

SLIDE MATERIAL FROM COMPASS COLLEAGUES

COMPASS at CERN

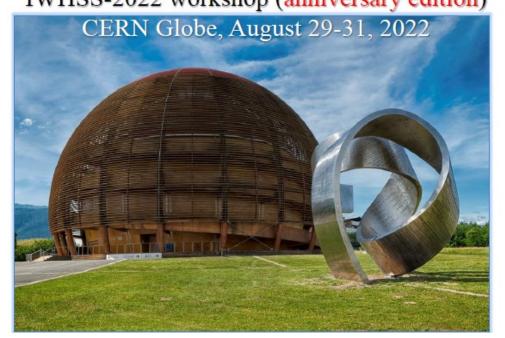
COMPASS at CERN

The COMPASS Collaboration Listituto Nazionale di Fisica Nucleare

\sim 200 physicists, \sim 25 institutes from 13 countries

Hadron programme

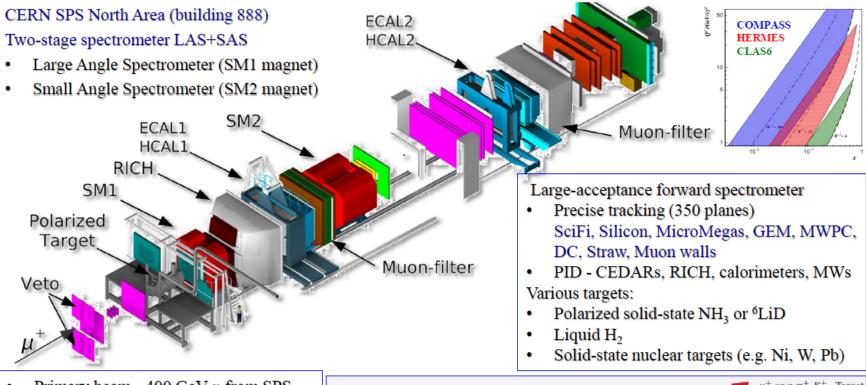
Primakoff effect, π and K polarisabilities Exotic (multiquark) states, glueballs (Double) charmed barions Precision studies of light meson spectrum


Drell-Yan process on a polarised target

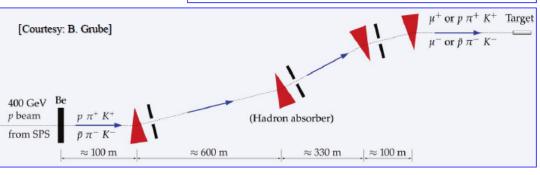
Spin dependent structure functions g_1 Gluon polarisation in the nucleon Quark polarisation distributions Transversity Vector meson production Λ polarisation DVCS/GPD

- **CERN SPS north area**
- Fixed target experiment
- Approved in 1997 (25 years)
- Taking data since 2002 (20 years)

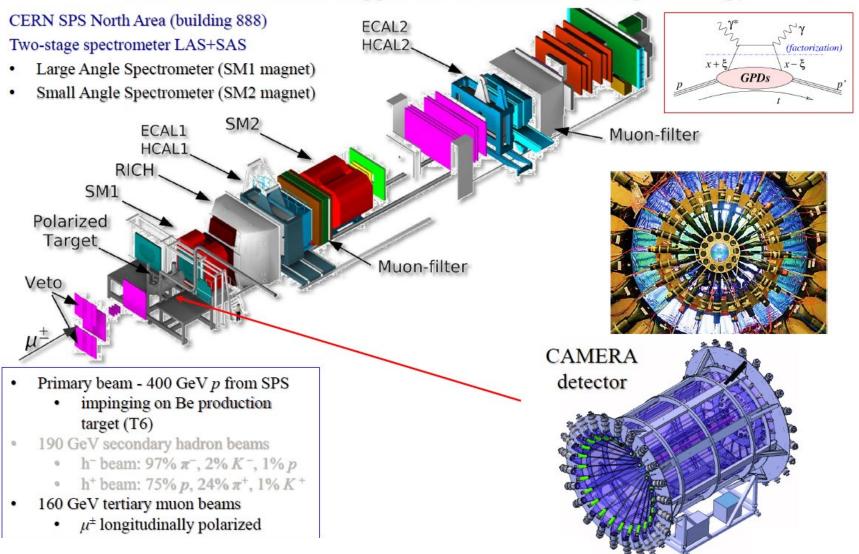
International Workshop on Hadron Structure and Spectroscopy IWHSS-2022 workshop (anniversary edition)



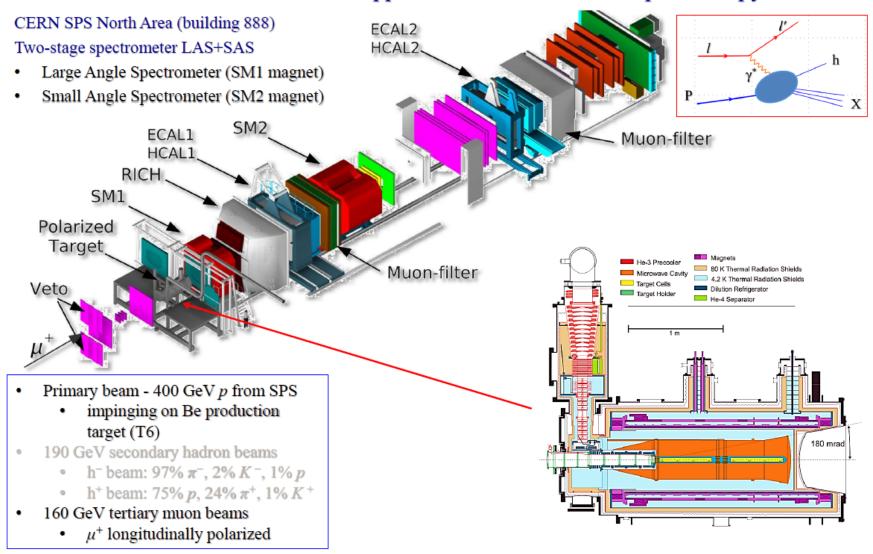
https://indico.cern.ch/event/1121975/



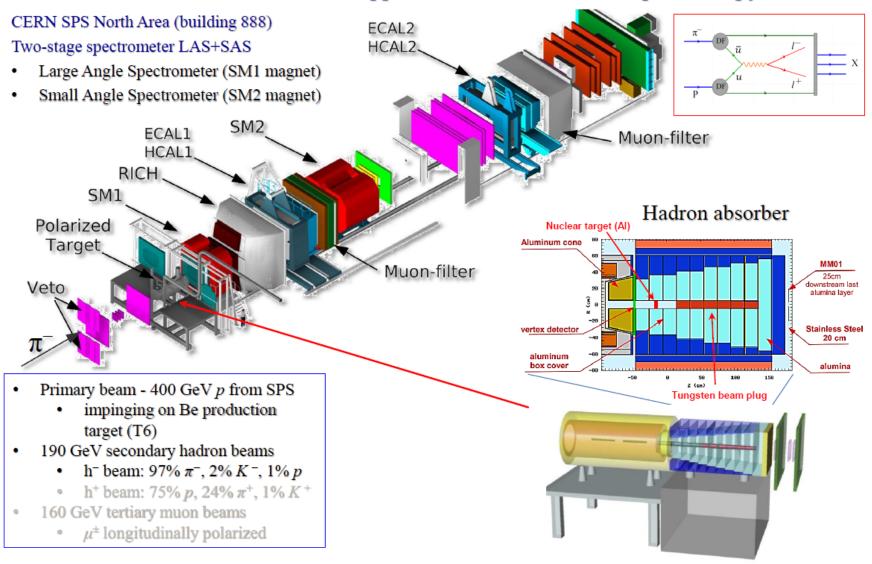
COMPASS experiemental setup


- Primary beam 400 GeV p from SPS
 - impinging on Be production target (T6)
- 190 GeV secondary hadron beams
 - h⁻ beam: 97% π^- , 2% K⁻, 1% p
 - h⁺ beam: 75% p, 24% π ⁺, 1% K⁺
- 160 GeV tertiary muon beams
 - μ[±] longitudinally polarized

COMPASS experiemental setup



COMPASS experiemental setup



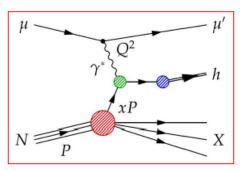
COMPASS experiemental setup WEN

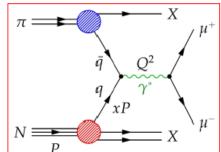
COMPASS data taking

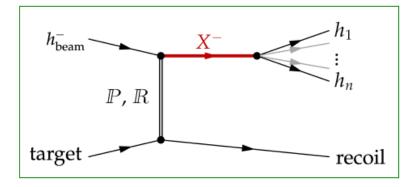
(11	2002 – 2004	nucleon structure μ –d, 160 GeV, L and T polarised target
PHASE I (2002 - 2011)	2005	CERN accelerator shutdown, increase of acceptance
	2006 2007 2008 – 2009 2010 2011 2012	nucleon structure μ –d, 160 GeV, L polarised target nucleon structure μ –p, 160 GeV, L and T polarised target hadron spectroscopy; Primakoff reaction nucleon structure μ –p, 160 GeV, T polarised target nucleon structure μ –p, 200 GeV, L polarised target Primakoff reaction; DVCS/SIDIS test
PHASE II (2012 - 2022)	2013	CERN accelerator shutdown, LS1
	2014 2015 2016 – 2017 2018	Drell-Yan π –p reaction with T polarised target (test) Drell-Yan π –p reaction with T polarised target DVCS/SIDIS μ –p, 160 GeV, unpolarised target Drell-Yan π –p reaction with T polarised target
	2019 – 2020	CERN accelerator shutdown, LS2
₫.	2021 – 2022	nucleon structure μ –d, 160 GeV, T polarised target

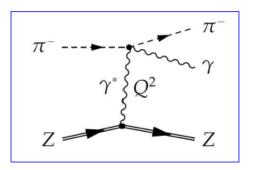
COMPASS physics program

Nucleon structure


- Hard scattering of μ^{\pm} and π^{-} off (un)polarized P/D targets
- Study of nucleon spin structure
- Parton distribution functions and fragmentation functions


Hadron spectroscopy


- Diffractive $\pi(K)$ dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states


Chiral dynamics

- Test chiral perturbation theory in $\pi(K)$ y reactions
- π^{\pm} and K^{\pm} polarizabilities
- Chiral anomaly $F_{3\pi}$

Chiral dynamics studies

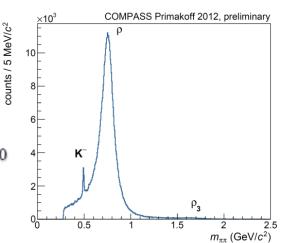
PRL **114** (2015) 062002

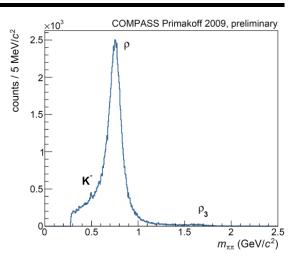
PACHRA Babusci Lebedev PLUTO, DM1 $\gamma p \rightarrow \gamma \pi^+ n$ DM2, Mark II $\gamma\gamma \rightarrow \pi^+\pi^-$ 30 Sigma Donoghue Serpukhov Mark II Fil'kov $-\pi Z \rightarrow \pi \gamma Z$ $\gamma\gamma \rightarrow \pi^+\pi^-$ **MAMI** $\gamma p \rightarrow \gamma \pi^+ n$ Kaloshin COMPASS $\gamma\gamma \rightarrow \pi^{+}\pi^{-}$ $\pi Z \rightarrow \pi \gamma Z$ GIS '06 year of publication

Measurement of the Charged-Pion Polarizability

(COMPASS Collaboration)

(Received 2 June 2014; revised manuscript received 24 December 2014; published 10 February 2015)

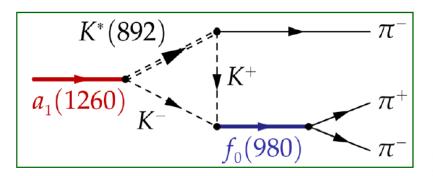

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma \to \pi^-\gamma$, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni} \to \pi^-\gamma\mathrm{Ni}$, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2 < 0.0015~(\mathrm{GeV}/c)^2$. From a sample of 63 000 events, the pion electric polarizability is determined to be $\alpha_\pi = (2.0 \pm 0.6_{\mathrm{stat}} \pm 0.7_{\mathrm{syst}}) \times 10^{-4}~\mathrm{fm}^3$ under the assumption $\alpha_\pi = -\beta_\pi$, which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.


$$\alpha_{\pi} = (2.0 \pm 0.6_{\rm stat} \pm 0.7_{\rm syst}) \times 10^{-4} \text{ fm}^3$$

<u>v</u>T. Nagel, PhD TUM, 2012 (COMPASS)

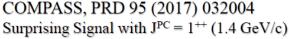
ongoing analysis:

study of chiral anomaly in $\pi^- \gamma \to \pi^- \pi^0$

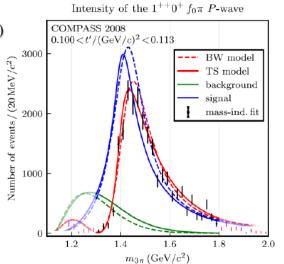


Hadron spectroscopy

Hadron spectroscopy

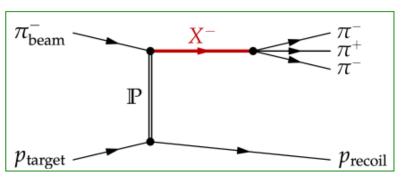

- Diffractive π(K) dissociation reaction with proton target
- PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

PHYSICAL REVIEW LETTERS 127, 082501 (2021)


Triangle Singularity as the Origin of the $a_1(1420)$

(Received 3 July 2020; revised 4 May 2021; accepted 26 May 2021; published 18 August 2021)

The COMPASS Collaboration experiment recently discovered a new isovector resonancelike signal with axial-vector quantum numbers, the $a_1(1420)$, decaying to $f_0(980)\pi$. With a mass too close to and a width smaller than the axial-vector ground state $a_1(1260)$, it was immediately interpreted as a new light exotic meson, similar to the X, Y, Z states in the hidden-charm sector. We show that a resonancelike signal fully matching the experimental data is produced by the decay of the $a_1(1260)$ resonance into $K^*(\to K\pi)\bar{K}$ and subsequent rescattering through a triangle singularity into the coupled $f_0(980)\pi$ channel. The amplitude for this process is calculated using a new approach based on dispersion relations. The triangle-singularity model is fitted to the partial-wave data of the COMPASS experiment. Despite having fewer parameters, this fit shows a slightly better quality than the one using a resonance hypothesis and thus eliminates the need for an additional resonance in order to describe the data. We thereby demonstrate for the first time in the lightmeson sector that a resonancelike structure in the experimental data can be described by rescattering through a triangle singularity, providing evidence for a genuine three-body effect.



Hadron spectroscopy

Hadron spectroscopy

- Diffractive π(K) dissociation reaction with proton target
- · PWA technique employed
- High-precision measurement of light-meson excitation spectrum
- Search for exotic states

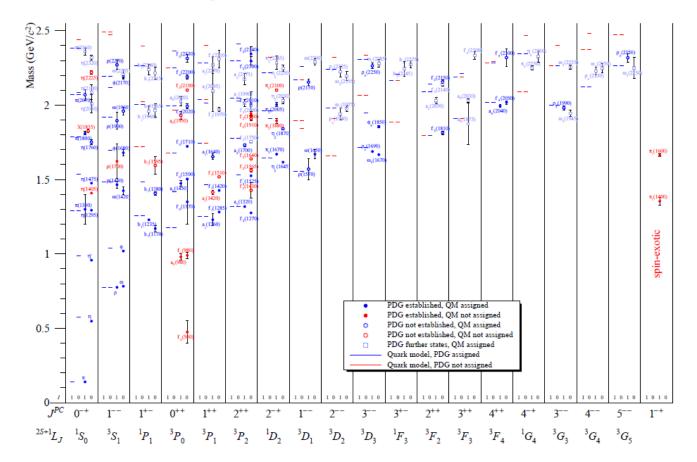
PHYSICAL REVIEW D 105, 012005 (2022)

Exotic meson $\pi_1(1600)$ with $J^{PC} = 1^{-+}$ and its decay into $\rho(770)\pi$

(Received 6 August 2021; accepted 8 September 2021; published 12 January 2022)

We study the spin-exotic $J^{PC}=1^{-+}$ amplitude in single-diffractive dissociation of $190~{\rm GeV}/c$ pions into $\pi^-\pi^-\pi^+$ using a hydrogen target and confirm the $\pi_1(1600)\to \rho(770)\pi$ amplitude, which interferes with a nonresonant 1^{-+} amplitude. We demonstrate that conflicting conclusions from previous studies on these amplitudes can be attributed to different analysis models and different treatment of the dependence of the amplitudes on the squared four-momentum transfer and we thus reconcile these experimental findings. We study the nonresonant contributions to the $\pi^-\pi^-\pi^+$ final state using pseudodata generated on the basis of a Deck model. Subjecting pseudodata and real data to the same partial-wave analysis, we find good agreement concerning the spectral shape and its dependence on the squared four-momentum transfer for the $J^{PC}=1^{-+}$ amplitude and also for amplitudes with other J^{PC} quantum numbers. We investigate for the first time the amplitude of the $\pi^-\pi^+$ subsystem with $J^{PC}=1^{--}$ in the 3π amplitude with $J^{PC}=1^{-+}$ employing the novel freed-isobar analysis scheme. We reveal this $\pi^-\pi^+$ amplitude to be dominated by the $\rho(770)$ for both the $\pi_1(1600)$ and the nonresonant contribution. These findings largely confirm the underlying assumptions for the isobar model used in all previous partial-wave analyses addressing the $J^{PC}=1^{-+}$ amplitude.

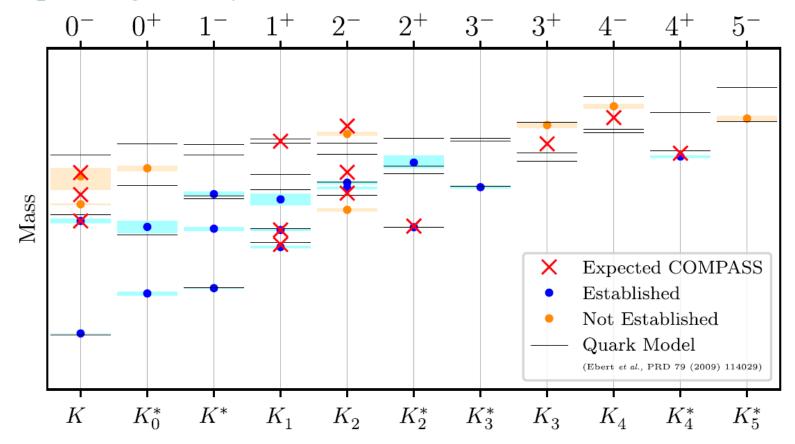
For an overview see the CERN-EP seminar by Mikhail Mikhasenko: https://cds.cern.ch/record/2776989


A review on COMPASS light meson spectroscopy

Light-Meson Spectroscopy with COMPASS

https://arxiv.org/abs/1909.06366

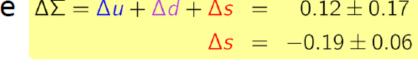
B. Ketzer^a, B. Grube^b, D. Ryabchikov^{c,b}



Strange mesons spectroscopy

COMPASS will release m_0/Γ of 13 strange mesons using $K^-\pi^-\pi^+$

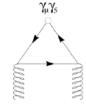
• K, K_1 , K_2^* , K_2 , K_3^* , K_3 , K_4^* , K_4



Spin puzzle reminder

1987: EMC nucleon spin puzzle $\Delta\Sigma = \Delta u + \Delta d + \Delta s =$

$$\Gamma_1 = \int_0^1 \frac{g_1(x) \mathrm{d}x}{1}$$


1989 G.G. Ross:

to recover the parton model: ΔG ~ 6

1988/9: axial anomaly may mask quark polarisation

- Altarelli, Ross; Efremov, Teryaev

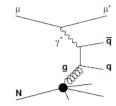
$$a_0 = \Delta \Sigma - n_f \frac{\alpha_s}{2\pi} \Delta G$$

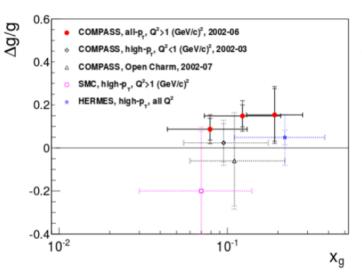
1993: SMC measures deuteron g_1

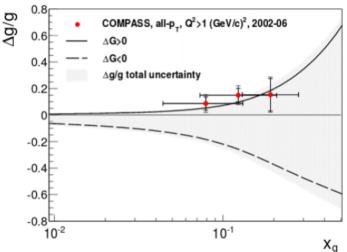
in agreement with Bjorken sum rule

$$\Gamma_1^{\mathsf{p}} - \Gamma_1^{\mathsf{n}} = \frac{1}{6}g_a$$

1995 new SMC and SLC data: to recover the parton model $\Delta G \sim 2.5$ at $O^2 \sim 10$ GeV²


Gluon polarisation




Direct measurements of $\Delta g(x)$

EPJC 77 (2017) 209

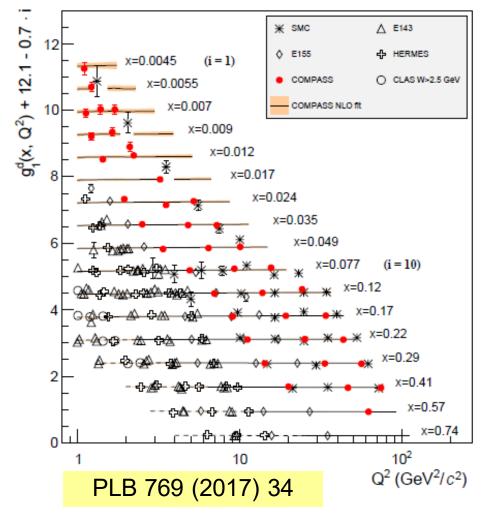
Direct measurements – via the cross section asymmetry for the photon–gluon fusion (PGF) with subsequent fragmentation into $c\bar{c}$ (LO, NLO) or $q\bar{q}$ (high $p_{\rm T}$ hadron pair (LO)): $A_{\gamma \rm N}^{\rm PGF} \approx \langle a_{\rm LL}^{\rm PGF} \rangle \frac{\Delta g}{a_{\rm LL}^{\rm PGF}}$

COMPASS from SIDIS on d for any $(p_T)_h$ and at LO:

$$\Delta g/g = 0.113 \pm 0.038 (\mathrm{stat.}) \pm 0.036 (\mathrm{syst.})$$

at $\langle Q^2 \rangle \approx 3 (\mathrm{GeV}/c)^2$, $\langle x_g \rangle \approx 0.10$

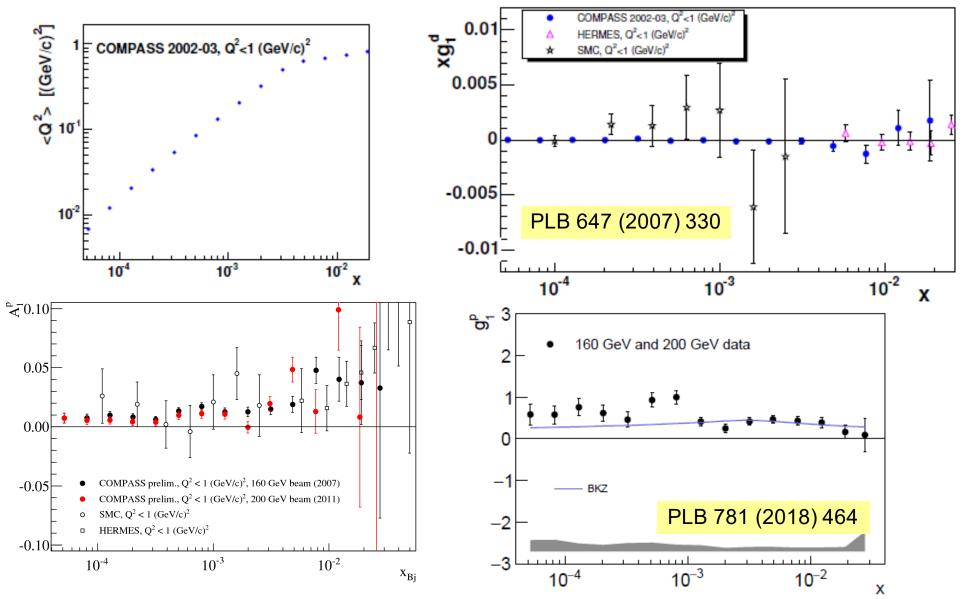
Inclusive DIS: 91



 $g_1^{\rm p}$ and $g_1^{\rm d}$, $Q^2 > 1$ (GeV/c)²

proton

deuteron



g_1 for $Q^2 < 1$

Bjorken sum rule

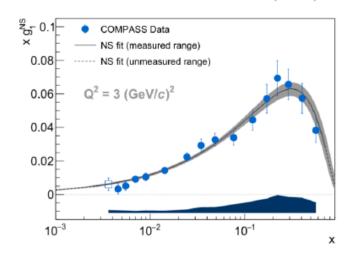
Non-singlet structure function:

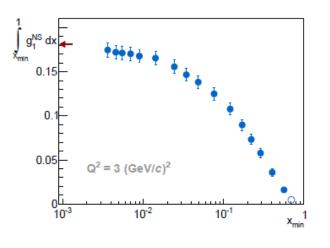
$$g_1^{\text{NS}} = g_1^{\text{p}}(x, Q^2) - g_1^{\text{n}}(x, Q^2)$$

= $2 \left[g_1^{\text{p}}(x, Q^2) - g_1^{\text{N}}(x, Q^2) \right]$

Its moment connected to the Bjorken sum rule:

$$\Gamma_1^{\text{NS}}(Q^2) = \int_0^1 g_1^{\text{NS}}(x, Q^2) dx = \frac{1}{6} \left| \frac{g_{\text{A}}}{g_{\text{V}}} \right| C_1^{\text{NS}}(Q^2)$$

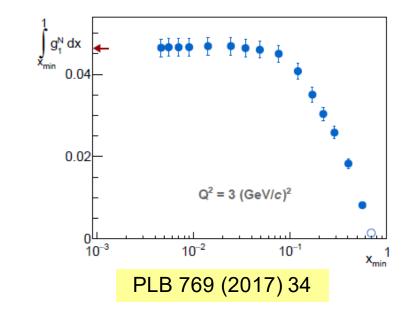

 $g_1^{\rm NS}$ calculated, NLO QCD fitted (only Δq_3), evolved to Q^2 = 3 (GeV/c)² and fit-extrapolated $x \to 0, 1$:


$$\Gamma_{1}^{\text{NS}} = 0.192 \pm 0.007_{\text{stat.}} \pm 0.015_{\text{syst.}}$$

$$\left| \frac{g_{\text{A}}}{g_{\text{V}}} \right| = 1.29 \pm 0.05_{\text{stat.}} \pm 0.10_{\text{syst.}}$$

Neutron β decay gives: $|g_{\rm A}/g_{\rm V}|=1.2701\pm0.002$

COMPASS PL B753 (2016) 18


Singlet axial charge a

First moments $\Gamma_1^p, \Gamma_1^d, \Gamma_1^N$ where $\Gamma_1^i = \int_0^1 g_1^i(x, Q^2) dx$

In particular:

$$\Gamma_1^{N}(Q^2) = \frac{1}{36} \left[4a_0 C_S(Q^2) + a_8 C_{NS}(Q^2) \right]$$
$$= \int_0^1 \frac{g_1^{d}(x, Q^2)}{1 - 1.5\omega_D} dx$$

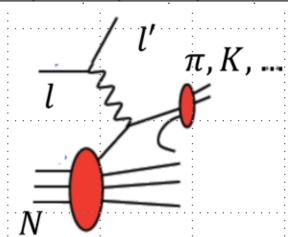
In the \overline{MS} : $a_0 = \Delta \Sigma = (\Delta u + \Delta \bar{u}) + (\Delta d + \Delta \bar{d}) + (\Delta s + \Delta \bar{s})$

 $\Gamma_1^{\rm N}$ approaches asymptotic value already at Q^2 = 3 (GeV/c) 2

From COMPASS data alone:

$$\Gamma_1^{\rm N}(Q^2 = 3 ({\rm GeV}/c)^2) = 0.046 \pm 0.002_{\rm stat.} \pm 0.004_{\rm syst.} \pm 0.005_{\rm evol.}$$

From COMPASS data alone (and a_8 from PRD 82 (2010) 114018): $a_0(Q^2 = 3 \text{ (GeV/}c)^2) = 0.32 \pm 0.02_{\text{stat.}} \pm 0.04_{\text{syst.}} \pm 0.05_{\text{evol.}}$



transversity

collinear description at leading twist

	:	nucleon polarisation				
		U	L	т		
sation	U	f_1				
quark polarisation	.L		g_1			
quark	Т			h	1	

number density $f_1(q)$

very well known

helicity distribution g_1 (Δq)

well known

transversity distribution $h_1 (\Delta_T q)$

- correlation between the transverse <u>polarisation</u> of the nucleon and the transverse <u>polarisation</u> of the quark
- related to tensor charge
- a chirally-odd distribution, not observable in DIS, accessible in SIDIS

$$x = \frac{Q^2}{2P \cdot q} \qquad y = \frac{P \cdot q}{P \cdot \ell} =_{LAB} \frac{E - E'}{E}$$

$$Q^2 = -q^2 \qquad W^2 = (P + q)^2$$

$$z = \frac{P \cdot P_h}{P \cdot q} =_{LAB} \frac{E_h}{E - E'}$$

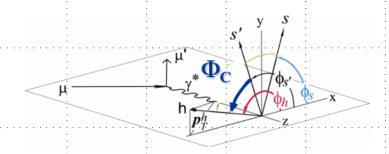
Collins asymmetry

Collins effect

azimuthal distribution of the hadrons produced in $lN^{\uparrow} \rightarrow l'hX$

$$N_h^{\pm}(\Phi_c) = N_h^0 \cdot \left[1 \pm P_T \cdot D_{NN} \cdot A_{coll} \cdot \sin \Phi_c \right]$$

± refer to the opposite orientation of the transverse spin of the nucleon


P_T is the target polarisation; **D**_{NN} is the transverse spin transfer coefficient initial → struck quark

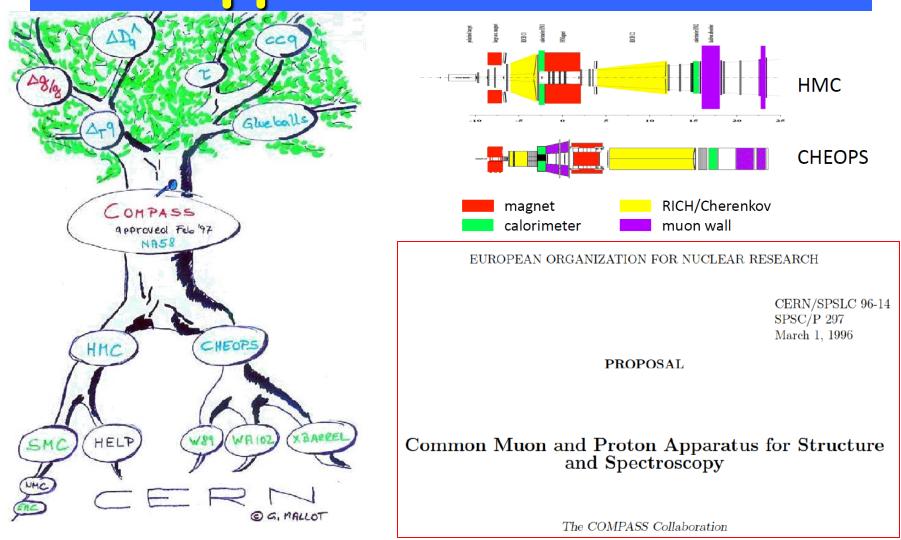
'Collins angle"

$$\Phi_{\mathbf{C}} = \phi_h - \phi_{s'} = \phi_h + \phi_{s'} - \pi$$

azimuthal angles of hadron momentum, of the spin of the fragmenting quark and of the nucleon in the GNS

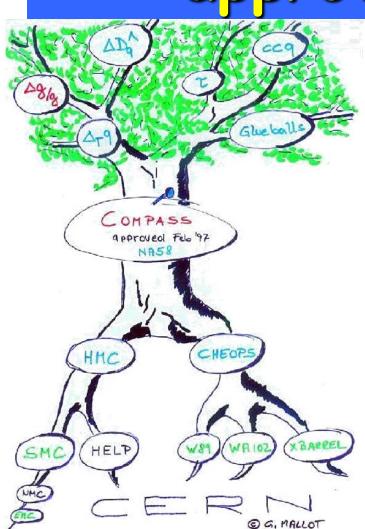
from the azimuthal distribution of the <u>hadrons</u> one measures the "Collins Asymmetry"

$$\boldsymbol{A}_{\text{Coll}} \propto \frac{\sum_{q} \boldsymbol{e}_{q}^{2} \left(\boldsymbol{\Delta}_{\text{T}} \boldsymbol{q} \cdot \boldsymbol{\Delta}_{\text{T}}^{0} \boldsymbol{D}_{q}^{h}\right)}{\sum_{q} \boldsymbol{e}_{q}^{2} \cdot \boldsymbol{q} \cdot \boldsymbol{D}_{q}^{h}}$$


$$\begin{array}{ll} \varDelta_T q & \leftrightarrow h_1^q \\ \Delta_T^0 D_q^h & \leftrightarrow H_{1\ q}^{\perp h} \text{ Collins function} \end{array}$$

HELP proposal (L. Dick, B. Vuaridel, R. Hess, 1993) rejected by CERN

COMPASS Proposal approved in 1997



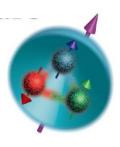
COMPASS Proposal approved in 1997

The Sivers function:

a long debate

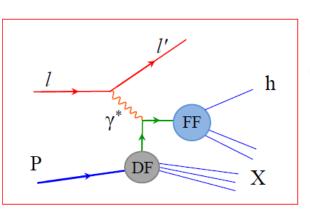
- 1992 introduced by D. Sivers
- 1993 J. Collins demonstrate that it must vanish
- 2002 S. Brodsky et al.: it can be ≠ 0 because of FSI
- 2002 J. Collins: process dependent, change of sign SIDIS ↔ DY

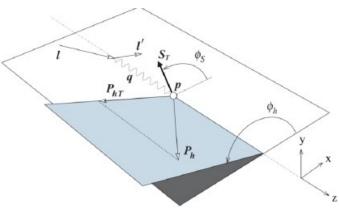
1996: not in our Proposal



1969 Parton model

1973 asymptotic freedom and QCD

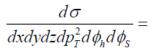




1978 intrinsic transverse motion of quarks and azimuthal asymmetries

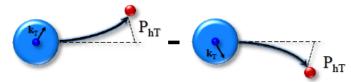
$$\hat{s} \simeq xs \left[1 - 2\sqrt{1 - y} \frac{k_T}{Q} \cdot \cos \varphi_q \right]$$

$$\hat{u} \simeq -xs \left(1 - y \right) \left[1 - \frac{2k_T}{Q\sqrt{1 - y}} \cdot \cos \varphi_q \right]$$


$$\hat{t} = -Q^2 = -xys, \quad \text{where } s = \left(1 + P \right)^2$$

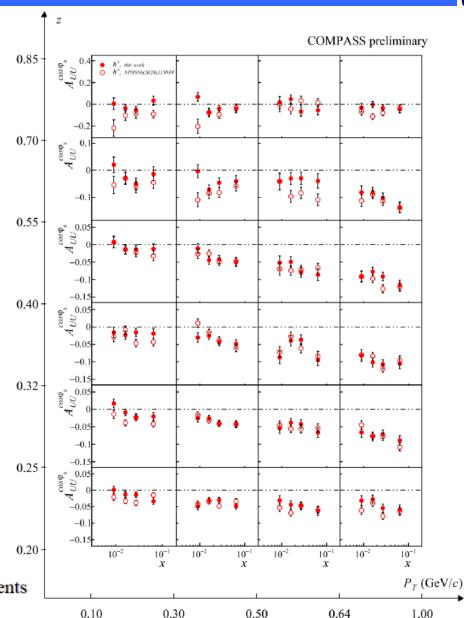
$$d\sigma^{lp \to l'hX} \propto d\sigma^{lq \to lq} \propto \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$$

Cahn effect in SIDIS

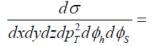


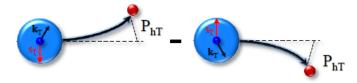
$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$\times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \ldots)$$

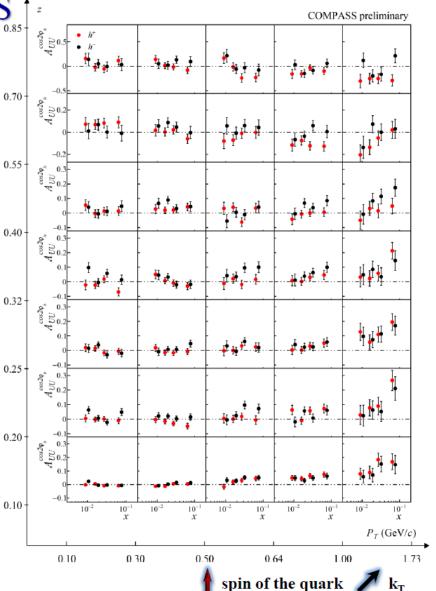

Quark Nucleon	U
	$f_1^q(x, \boldsymbol{k}_T^2)$
U	number density

As of 1978 – simplistic kinematic effect: non-zero k_T induces an azimuthal modulation As of 2022 – complex SF (twist-2/3 functions)


A number of measurements by different experiments



$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$


$$\times (1 + \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_h}\cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h}\cos2\phi_h + \ldots)$$

Quark Nucleon	U	T
	$f_1^q(x, \boldsymbol{k}_T^2)$	$h_1^{\perp q}(x, \boldsymbol{k}_T^2)$
U	number density	Boer-Mulders

Arises due to the correlation between quark transverse spin and intrinsic transverse momentum

SIDIS x-section and TMD at twist 2

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

All measured by COMPASS

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$

$$1 + \sqrt{2\varepsilon (1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda \sqrt{2\varepsilon (1-\varepsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h$$

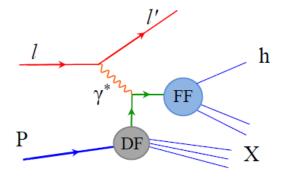
$$+ S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin\phi_{h}} \sin \phi_{h} + \varepsilon A_{UL}^{\sin 2\phi_{h}} \sin 2\phi_{h} \right]$$

$$+ S_L \lambda \left[\sqrt{1 - \varepsilon^2} A_{LL} + \sqrt{2\varepsilon (1 - \varepsilon)} A_{LL}^{\cos \phi_h} \cos \phi_h \right]$$

$$A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S)$$

$$+ \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S)$$

$$+ S_T + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S)$$


$$+ \sqrt{2\varepsilon (1+\varepsilon)} A_{UT}^{\sin\phi_S} \sin\phi_S$$

$$+ \sqrt{2\varepsilon (1+\varepsilon)} A_{UT}^{\sin(2\phi_h - \phi_S)} \sin(2\phi_h - \phi_S)$$

$$+ \sqrt{2\varepsilon (1+\varepsilon)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S)$$

$$+ S_T \lambda + \sqrt{2\varepsilon (1-\varepsilon)} A_{LT}^{\cos\phi_S} \cos\phi_S$$

 $+\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)$

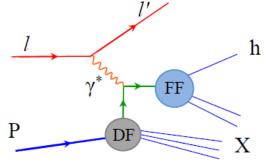
Quark Nucleon	U	L	T
U	number density		Boer-Mulders
L		helicity	worm-gear L
T	Sivers	Kotzinian- Mulders worm-gear T	transversity pretzelosity

SIDIS x-section and TMD at twist 2

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} =$$

All measured by COMPASS

$$\left[\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right]\left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$


$$1 + \sqrt{2\varepsilon (1+\varepsilon)} A_{UU}^{\cos\phi_h} \cos\phi_h + \varepsilon A_{UU}^{\cos2\phi_h} \cos2\phi_h + \lambda \sqrt{2\varepsilon (1-\varepsilon)} A_{LU}^{\sin\phi_h} \sin\phi_h$$

$$+ S_{L} \left[\sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin\phi_{h}} \sin \phi_{h} + \varepsilon A_{UL}^{\sin2\phi_{h}} \sin 2\phi_{h} \right]$$

+
$$S_L \lambda \left[\sqrt{1 - \varepsilon^2} A_{LL} + \sqrt{2\varepsilon (1 - \varepsilon)} A_{LL}^{\cos \phi_h} \cos \phi_h \right]$$

$$\begin{bmatrix} A_{UT}^{\sin(\phi_h - \phi_S)} \sin(\phi_h - \phi_S) \\ + \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin(\phi_h + \phi_S) \\ + \varepsilon A_{UT}^{\sin(3\phi_h - \phi_S)} \sin(3\phi_h - \phi_S) \\ + \sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin\phi_S} \sin\phi_S \\ + \sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin(2\phi_h - \phi_S)} \sin(2\phi_h - \phi_S) \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{(1-\varepsilon^2)} A_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \\ + \sqrt{2\varepsilon(1-\varepsilon)} A_{LT}^{\cos\phi_S} \cos\phi_S \end{bmatrix}$$

$$A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$$

$$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$$

$$A_{UT}^{\sin(3\phi_h-\phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$$

$$A_{UT}^{\sin(\phi_s)} \stackrel{WW}{\propto} Q^{-1} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \ldots \right)$$

$$A_{UT}^{\sin(2\phi_h - \phi_s)} \overset{WW}{\propto} Q^{-1} \left(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \ldots \right)$$

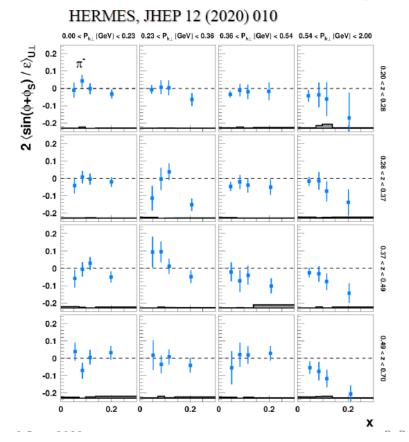
$$A_{LT}^{\cos(\phi_h-\phi_s)}\propto g_{1T}^q\otimes D_{1q}^h$$

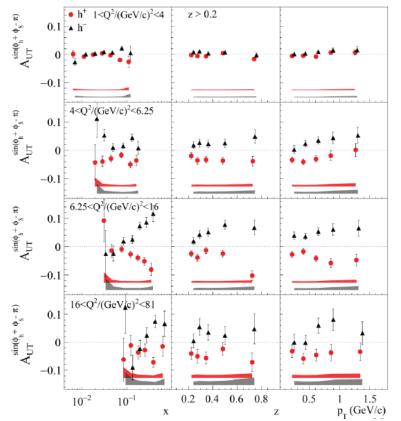
$$A_{LT}^{\cos(\phi_{\mathfrak{s}})} \overset{\scriptscriptstyle WW}{\propto} Q^{-1} \Big(g_{1T}^{\,q} \otimes D_{1q}^{\,h} + ... \Big)$$

$$A_{LT}^{\cos(2\phi_h-\phi_s)}\overset{ww}{\propto}Q^{-1}\left(g_{1T}^{q}\otimes D_{1q}^{h}+...
ight)$$

+ $\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos(2\phi_h-\phi_S)}\cos(2\phi_h-\phi_S)$

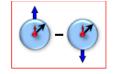
SIDIS TSAs: Collins effect and Transversity


$$\frac{d\sigma}{dxdydzdp_{\scriptscriptstyle T}^2d\phi_{\scriptscriptstyle h}d\phi_{\scriptscriptstyle S}} \propto \left(F_{{\scriptscriptstyle UU,T}} + \varepsilon F_{{\scriptscriptstyle UU,L}}\right) \left\{1 + \ldots + \ S_{\scriptscriptstyle T} \ \varepsilon A_{{\scriptscriptstyle UT}}^{\sin(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S})} \sin\left(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S}\right) + \ldots \ \right\}$$


$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{\boldsymbol{M_h}} \frac{\boldsymbol{h_1^q} \boldsymbol{H_{1q}^{\perp h}}}{\boldsymbol{H_1^q}} \right]$$

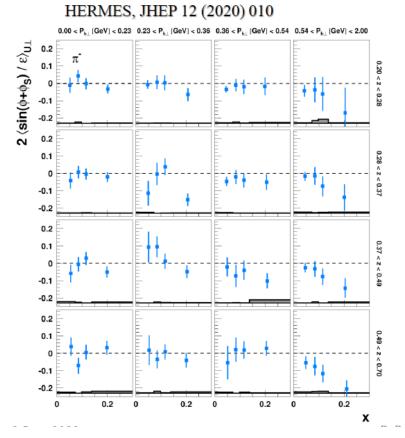
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?

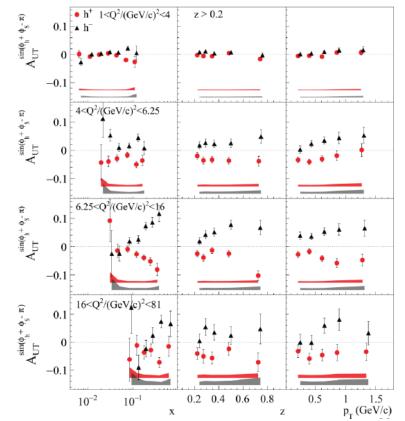
COMPASS, PBL 770 (2017) 138



SIDIS TSAs: Collins effect and Transversity

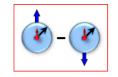
$$\frac{d\sigma}{dxdvdzdp_{\scriptscriptstyle T}^2d\phi_{\scriptscriptstyle h}d\phi_{\scriptscriptstyle S}} \propto \left(F_{UU,{\scriptscriptstyle T}} + \varepsilon F_{UU,{\scriptscriptstyle L}}\right) \left\{1 + \ldots + S_{\scriptscriptstyle T} \; \varepsilon A_{UT}^{\sin(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S})} \sin\left(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S}\right) + \ldots \right\}$$




$$\left| F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p_T}}{M_h} h_1^q \boldsymbol{H}_{1q}^{\perp h} \right] \right|$$

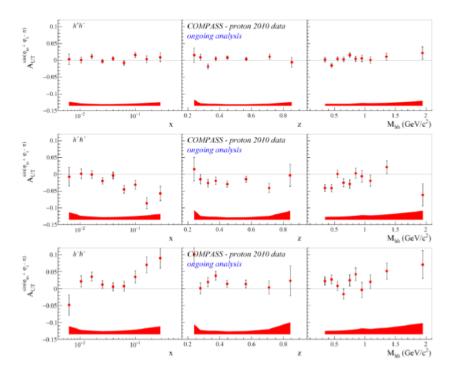
- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?

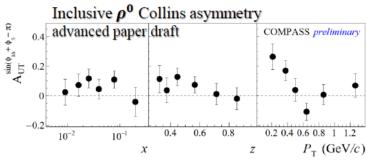
COMPASS, PBL 770 (2017) 138

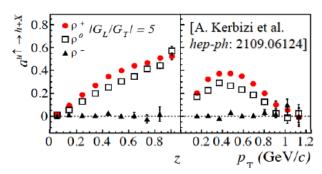


SIDIS TSAs: Collins effect and Transversity

$$\frac{d\sigma}{dxdydzdp_T^2d\phi_hd\phi_S} \propto \left(F_{UU,T} + \varepsilon F_{UU,L}\right) \left\{1 + \ldots + S_{\rm T} \varepsilon A_{UT}^{\sin(\phi_h + \phi_S)} \sin\left(\phi_h + \phi_S\right) + \ldots \right\}$$

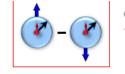



$$F_{UT}^{\sin(\phi_h + \phi_S)} = C \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M_h} h_1^q H_{1q}^{\perp h} \right]$$


- · Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?

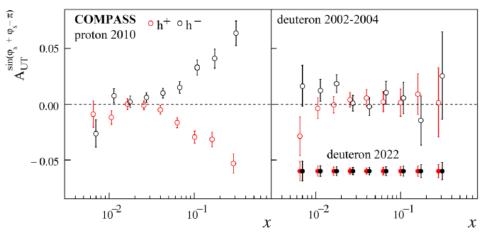
Ongoing analysis: Collins-like dihadron TSAs

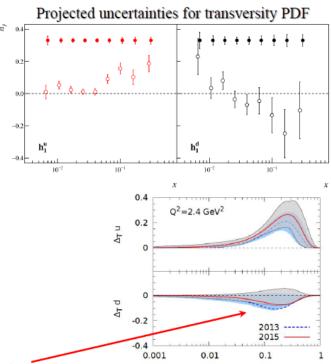
- · indication for a positive asymmetry
- opposite to π⁺ and π⁰ as predicted by the models
- Large effect at small P_T



SIDIS TSAs: Collins effect and Transversity

$$\frac{d\sigma}{dxdydzdp_{\scriptscriptstyle T}^2d\phi_{\scriptscriptstyle h}d\phi_{\scriptscriptstyle S}} \propto \left(F_{\scriptscriptstyle UU,T} + \varepsilon F_{\scriptscriptstyle UU,L}\right) \left\{1 + \ldots + \ S_{\scriptscriptstyle T} \ \varepsilon A_{\scriptscriptstyle UT}^{\sin(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S})} \sin\left(\phi_{\scriptscriptstyle h} + \phi_{\scriptscriptstyle S}\right) + \ldots \ \right\}$$

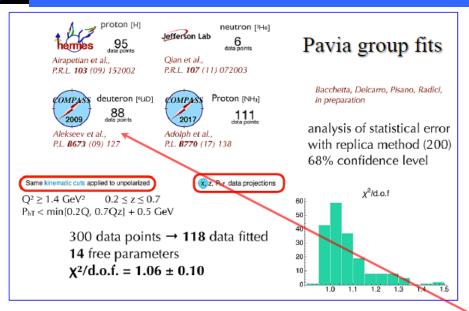

$$\boxed{F_{\mathit{UT}}^{\sin(\phi_h + \phi_{\scriptscriptstyle{S}})} = C \Bigg[-\frac{\hat{\pmb{h}} \cdot \pmb{p_T}}{M_h} \, h_1^q H_{1q}^{\perp h} \, \Bigg]}$$

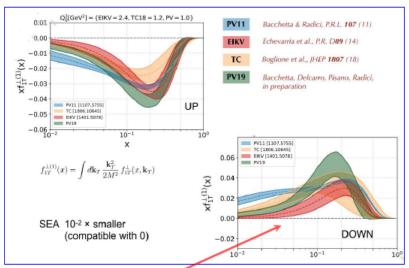


- Measured on P/D in SIDIS and in dihadron SIDIS
- Compatible results COMPASS/HERMES (Q² is different by a factor of ~2-3)
- No impact from Q²-evolution?
- Extensive phenomenological studies and various global fits by different groups

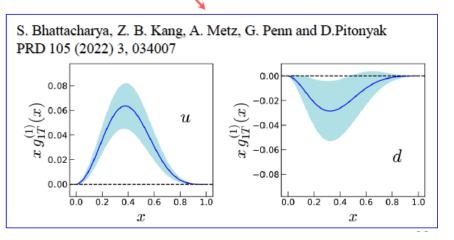
[Addendum to the COMPASS-II Proposal]

Projected uncertainties for Collins asymmetry


COMPASS-II (2022)

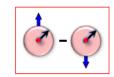

- · Deuteron measurement to be repeated
- Will be crucial to constrain the transversity TMD PDF for the d-quark

COMPASS 2022 data



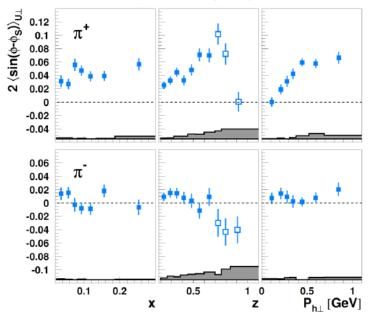
JAM Collaboration, PRD 102, 054002 (2020) $xh_1(x)$ d0.4 0.6 0.8 0.2 0.6 0.8 0.20.40.00 $xf_{1T}^{\perp(1)}(x)$ --- Echevarria et al '14 Anselmino et al '17 0.02JAM200.20.6 0.20.6 0.4 $zH_1^{\perp(1)}(z)$ Anselmino et al '13 unf --- Anselmino et al '15 Kang et al '15 Radici, Bacchetta '18 Benel et al '19 fav D'Alesio et al '20 z0.6 0.40.60.8

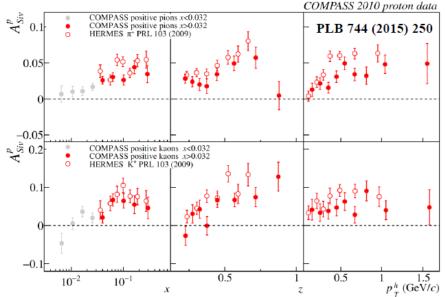
COMPASS 2022 deuteron run

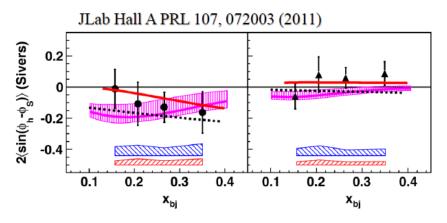


SIDIS TSAs: Sivers effect

$$\frac{d\sigma}{dxdydzdp_{\scriptscriptstyle T}^2d\phi_{\scriptscriptstyle h}d\phi_{\scriptscriptstyle S}} \propto \left(F_{\scriptscriptstyle UU,T} + \varepsilon F_{\scriptscriptstyle UU,L}\right) \left\{1 + \ldots + S_{\scriptscriptstyle T} A_{\scriptscriptstyle UT}^{\sin(\phi_{\scriptscriptstyle h} - \phi_{\scriptscriptstyle S})} \sin(\phi_{\scriptscriptstyle h} - \phi_{\scriptscriptstyle S}) + \ldots \right\}$$

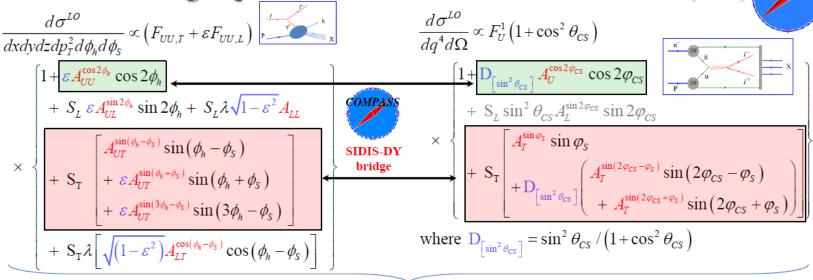



$$\boxed{F_{UT,T}^{\sin(\phi_h-\phi_S)} = C \Bigg[-\frac{\hat{\pmb{h}} \cdot \pmb{k_T}}{M} f_{1T}^{\perp q} D_{1q}^h \Bigg], F_{UT,L}^{\sin(\phi_h-\phi_S)} = 0}$$



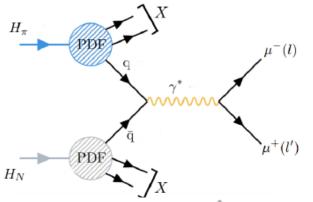
- Measured on proton and deuteron
- Expected to change sign between SIDIS and Drell-Yan

HERMES, JHEP 12 (2020) 010

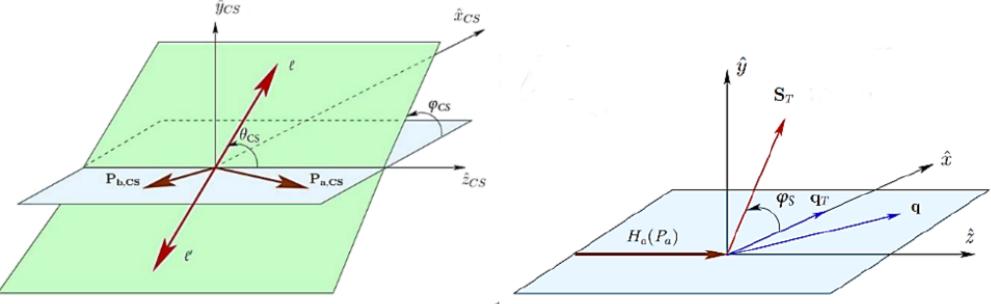


Polarised Drell-Yan

SIDIS and single-polarized DY x-sections at twist-2 (LO)

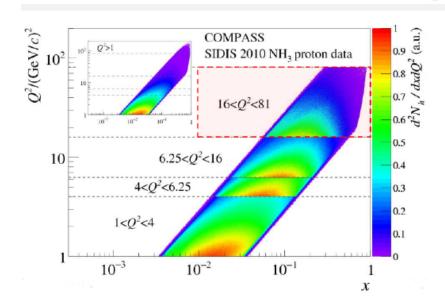

Complementary information from two different channels:

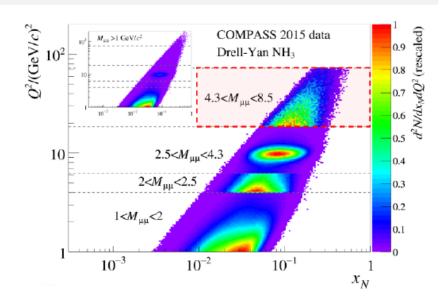
- SIDIS-DY bridging of nucleon TMD PDFs; Universality studies;
- Sign-change of T-odd Sivers and Boer-Mulders TMD PDFs;
- Multiple access to Collins FF $H_{1q}^{\perp h}$ and pion Boer-Mulders PDF $h_{1,\pi}^{\perp q}$



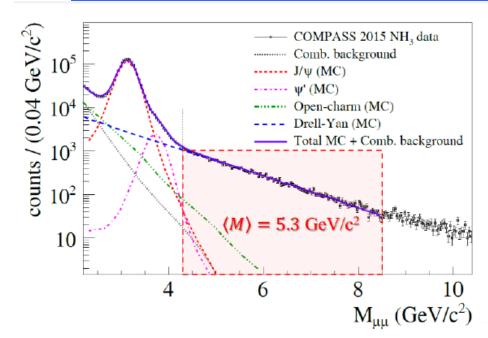
Polarised Drell-Yan

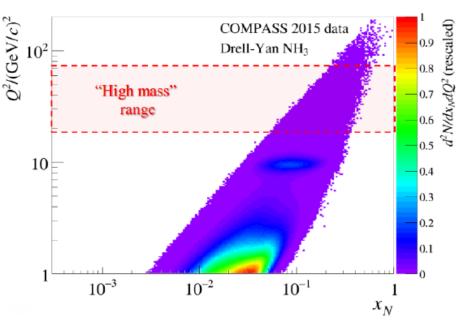
- $\pi^- + p^\uparrow \rightarrow \mu^+ \mu^- + X$ π^- beam of 190 GeV/c, $\langle I \rangle \approx 7 \times 10^7 \text{s}^{-1}$, from CERN SPS
- Transversely polarized NH₃ target (2×55 cm)
 + Al target (7 cm) + W beam plug (120 cm)

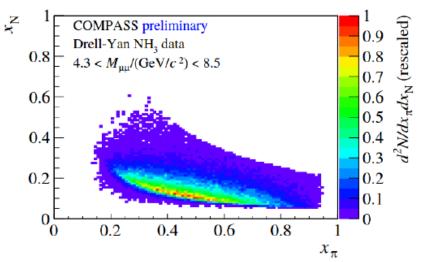

Collins-Soper ref. frame (CS)

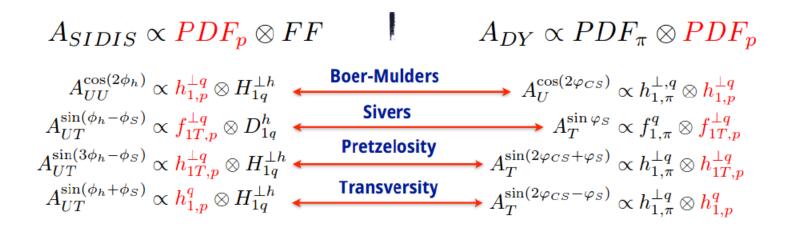

Target rest frame (S)

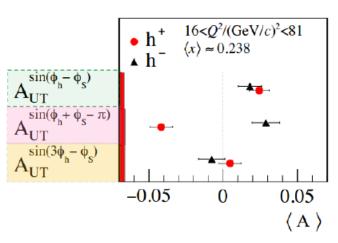
Aceptances



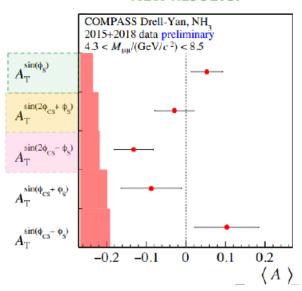

- COMPASS goals: test of the TMD PDFs universality; test of the Lam-Tung relation.
- In COMPASS, comparable (x, Q^2) acceptance in SIDIS and DY. Unique!
- In both cases, cross-sections depend on (polar and azimuthal) asymmetries described by contributions of twist-2 (or higher) TMD PDFs.
- SIDIS and DY reactions for transversaly polarised proton analysed and the asymmetries measured in bins of x_N, x_π, x_F, q_t
- Measured asymmetries agree with models

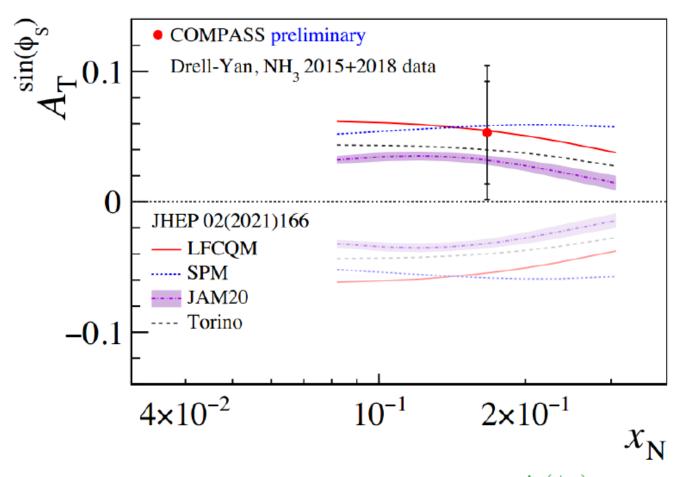

COMPASS DY results


- Events of $4.3 < M_{\mu\mu}/({\rm GeV}/c^2) < 8.5$ are DY events with background: ~4%
- DY events in the valence regions of π and N $\langle x_{\pi} \rangle = 0.50, \ \langle x_{N} \rangle = 0.17$



COMPASS DY results

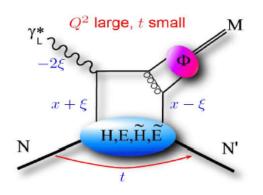


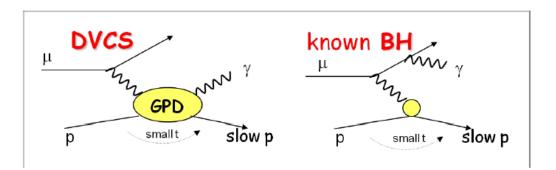

NEW RESULTS!

Sivers sign change

sign change

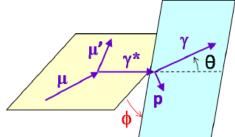
no sign change


COMPASS DY result for Sivers asymmetry, $A_T^{\sin(\phi_S)}$ **consistent with** (predicted) **sign change** of the Sivers TMD, f_{1T}^{\perp}



DVCS and DVMP

DVCS/DVMP: $\mu p \rightarrow \mu p \gamma(M)$; observables


$$d\sigma^{\mu p \to \mu p \gamma} = d\sigma^{BH} + (d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}) + e_{\mu} (ReI + P_{\mu} ImI)$$

Observables for unpolarised target (Phase 1):

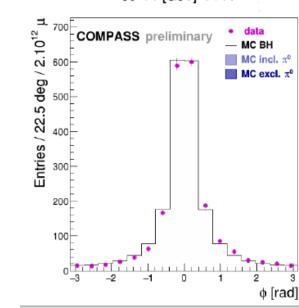
•
$$S_{\text{CS,U}} \equiv \mu^{+\leftarrow} + \mu^{-\rightarrow} = 2 \left(d\sigma^{\text{BH}} + d\sigma^{\text{DVCS}}_{\text{unpol}} + e_{\mu} P_{\mu} \text{Im} I \right)$$

•
$$D_{\text{CS,U}} \equiv \mu^{+\leftarrow} - \mu^{-\rightarrow} = 2 \left(P_{\mu} d\sigma_{\text{pol}}^{\text{DVCS}} + e_{\mu} \text{Re} I \right)$$

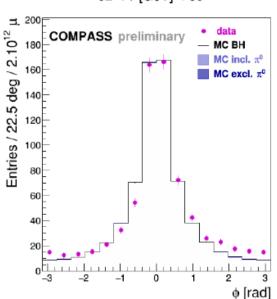
$$A_{\text{CS,U}} \equiv \frac{\mu^{+\leftarrow} - \mu^{-\rightarrow}}{\mu^{+\leftarrow} + \mu^{-\rightarrow}} = \frac{D_{\text{CS,U}}}{S_{\text{CS,U}}}$$

■ Each term ϕ -modulated If ϕ -dependence integrated over \Longrightarrow twist-2 DVCS contribution; if ϕ -dependence analysed: \Longrightarrow Im (F_1H) and Re (F_1H) ; H dominance @ COMPASS kin.

Analogously for transversely polarised target (Phase 2): $S_{CS,T}, D_{CS,T}, A_{CS,T} \Longrightarrow E$


DVCS and BH

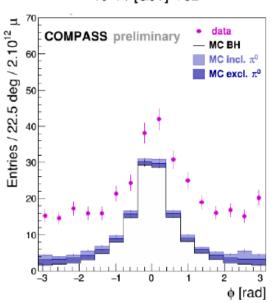
Pure BH


$$\langle x \rangle \approx 0.0085$$

 $O^2 \approx 1.8 \text{ GeV}^2$

80 < v [GeV] < 144

Interference BH/DVCS

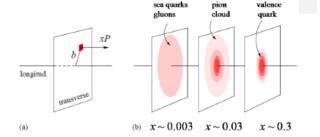

$$\langle x \rangle \approx 0.020$$

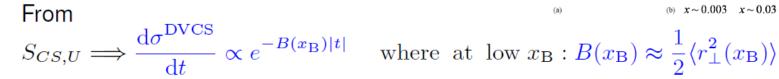
 $Q^2 \approx 2.0 \text{ GeV}^2$

DVCS (above the BH)

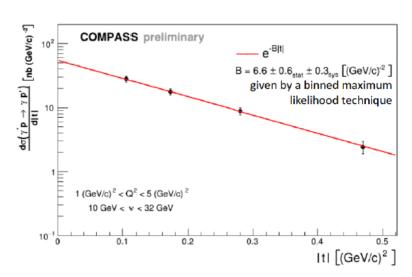
$$\langle x \rangle \approx 0.063$$
 $Q^2 \approx 2.1 \ \mathrm{GeV}^2$

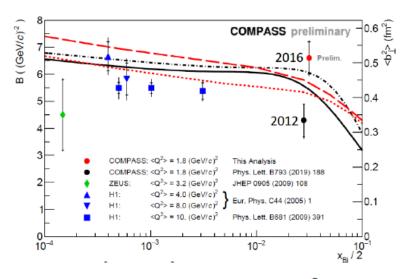
2012+2016 (part of) data


Approximately $5 \times$ higher statistics from 2016 still being analysed 2012 data published in Phys.Lett.B **793** (2019) 188



DVCS results




Nucleon transverse imaging ("tomography"):

where at low
$$x_{\rm B}: B(x_{\rm B}) \approx \frac{1}{2} \langle r_{\perp}^2(x_{\rm B}) \rangle$$

Analysis of the 2016 data (ongoing!) is more refined; binning is in 3 or 4 variables (Q^2, t, ν, ϕ)

To determine the full x_{Bj} dependence of the transverse extension of partons, a global analysis of DVCS data of HERA, JLab, CERN needed.

COMPASS anniversaries and last run

Arguably the most comprehensive experimental detector system & collaboration to study hadron structure using complementary tools: Muon (L,T) DIS, Hadron Scattering, DVCS and Drell-Yan

From 1995 (letter of intent) until to today: ~130 Diploma/Masters/Bachelor's Theses ~130 Ph.D. Theses ~10 Habilitation Theses ~75 Peer Reviewed Publications

A high bar for future experimental ventures

Slide courtesy A. Deshpande, IWHSS2022

Courtesy

A. Bacchetta

Exploration

Consolidation Precision