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RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

▸ Origin of Dark Matter? 
▸ Abundance of matter over antimatter?
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▸ Factorization at next-to-leading power 
▸ systematic method for dealing with endpoint-divergent 

convolution integrals 
▸ applications to Higgs production in gluon-gluon fusion and rare 

exclusive B decays

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

OUTLINE
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Z.L. Liu, MN: JHEP 04 (2020) 033;  Z.L. Liu, B. Mecaj, MN, X. Wang: JHEP 01 (2021) 077;  
Z.L. Liu, MN, M. Schnubel, X. Wang: arXiv:2212.10477;  C. Cornella, M. König, MN: arXiv:2212.14430

▸ Theory of non-global observables at hadron collider 
▸ first resummation of ”super-leading logarithms” 
▸ estimates for  scattering and outlookgg → gg
T. Becher, MN, D. Y. Shao: Phys. Rev. Lett. 127 (2021) 212002 & to appear (with M. Stillger)
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SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES
Factorization of different scales is a fundamental concept of physics: 

▸ LHC cross sections:   

▸ Basis for separation of perturbative from nonperturbative effects 

▸ Systematic resummation of large logarithmic corrections

σ(pp → X) = σparton(ab → X) ⊗ PDFs
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RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS
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Soft-collinear effective theory (SCET) provides 
a framework for studying scale separation and 
resummation for processes involving light 
energetic particles, using powerful EFT tools

[Bauer et al. 2000-2001; Beneke et al. 2002]
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SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES
Conventional EFTs provide a series expansion in inverse powers of a 
large scale Q: 

▸ Examples:  ,  χPT,  HQET,  SMEFT,  … 

▸ Extension to higher orders is straightforward, even if often tedious

ℋweak
eff
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RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

SCET is more complicated in many regards: 

▸ Operators contain non-local products of fields, separated by light-
like distances 

▸ EFT fields are split up in momentum modes (soft, collinear, hard, …)
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SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES
Prototypical SCET factorization theorem 

▸ Examples:  threshold resummation and pT resummation for Drell-
Yan and Higgs production, jet vetos, event shapes, jet substructure, 
non-global and super-leading logarithms, … 

▸ Products/convolutions of component functions, which live at a 
single characteristic scale
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hard collinear soft
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SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES
Extension to next-to-leading power? 

▸ Generically, find endpoint-divergent convolution integrals 

▸ Upset scale separation and break factorization 

▸ Failure of dimensional regularization and MS scheme 

 questions usefulness of the entire SCET framework! 

A hard problem! Several groups worldwide                                            
have been working on this for years…

⇒
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HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
Leading momentum regions, each corresponding to a SCET operator:
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Figure 1. Relevant regions of loop momenta contributing to the amplitudes for h ! ��

(left) and gg ! h (right). The convolution symbol ⌦ in the second term means an integral

over the momentum-fraction variable z. The green double lines in the third term represent

finite Wilson-line segments, whereas the red double lines indicate semi-finite Wilson lines

in the adjoint representation of SU(Nc), which are present only for the gluon case.

2.2 Factorization in h ! �� decay

Before studying the factorization properties of the gg ! h production process, we

find it instructive to recapitulate the main steps in the derivation of the analogous

factorization theorem for the h ! �� decay amplitude. We begin with the factor-

ization formula in terms of bare Wilson coe�cients and operator matrix elements

derived in [4]. It consists of the matrix elements of three bare SCET operators O(0)

i,�

multiplied (or convoluted) with bare Wilson coe�cients H(0)

i,�
, which account for the

hard matching corrections arising when the full theory (i.e., the SM with the top

quark integrated out) is matched onto SCET. The factorization theorem reads

Mb(h ! ��) = H(0)

1,�
hO(0)

1,�
i+ 2

Z
1

0

dz H(0)

2,�
(z)hO(0)

2,�
(z)i+H(0)

3,�
hO(0)

3,�
i . (2.4)

The three terms correspond to di↵erent regions of loop momenta contributing to the

decay amplitude. The situation is portrayed in figure 1 for both the h ! �� (left)

and gg ! h (right) process. A region analysis of the full-theory one-loop Feynman

diagram reveals that the momentum flowing through the propagator connecting the

two gauge bosons can be either hard, ni-collinear or soft. The same regions are

also relevant for multi-loop graphs. The first term in the factorization theorem is

obtained when all loop momenta are hard. In the e↵ective theory, the loop is then
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HEP2023 ChileMatthias Neubert  — 

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
Leading momentum regions, each corresponding to a SCET operator:
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Figure 1. Relevant regions of loop momenta contributing to the amplitudes for h ! ��

(left) and gg ! h (right). The convolution symbol ⌦ in the second term means an integral

over the momentum-fraction variable z. The green double lines in the third term represent

finite Wilson-line segments, whereas the red double lines indicate semi-finite Wilson lines

in the adjoint representation of SU(Nc), which are present only for the gluon case.

2.2 Factorization in h ! �� decay

Before studying the factorization properties of the gg ! h production process, we

find it instructive to recapitulate the main steps in the derivation of the analogous

factorization theorem for the h ! �� decay amplitude. We begin with the factor-

ization formula in terms of bare Wilson coe�cients and operator matrix elements

derived in [4]. It consists of the matrix elements of three bare SCET operators O(0)

i,�

multiplied (or convoluted) with bare Wilson coe�cients H(0)

i,�
, which account for the

hard matching corrections arising when the full theory (i.e., the SM with the top

quark integrated out) is matched onto SCET. The factorization theorem reads

Mb(h ! ��) = H(0)
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The three terms correspond to di↵erent regions of loop momenta contributing to the

decay amplitude. The situation is portrayed in figure 1 for both the h ! �� (left)

and gg ! h (right) process. A region analysis of the full-theory one-loop Feynman

diagram reveals that the momentum flowing through the propagator connecting the

two gauge bosons can be either hard, ni-collinear or soft. The same regions are

also relevant for multi-loop graphs. The first term in the factorization theorem is

obtained when all loop momenta are hard. In the e↵ective theory, the loop is then
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Figure 3. Graphical illustration of the impact of the cuto↵s on the convolution integrals

over `+ and `� in the last term of the bare factorization formula (2.8). The “infinite bin”

is subtracted twice and must be added back in the form of an extra contribution to the

bare Wilson coe�cient H(0)

1,�
.

contribution to the renormalized Wilson coe�cient H1,�(µ). It is thus possible to

derive a renormalized version of the factorization formula (2.8).

2.3 Factorization theorem for gg ! h

E

Mh

p
mbMh mb ⇤QCD

H1 S1

H2 S2

H3 J · J S3

hOggi

Fgg

O3

Figure 4. Illustration of the four energy scales relevant to the gg ! h fusion process

mediated via light quarks. The di↵erent objects in the factorization theorem are shown at

their respective scales. The hard, jet and soft functions can be collected into the h ! gg

form factor Fgg. This quantity is the Wilson coe�cient arising when the SM is matched

onto a low-energy e↵ective theory below the scale mb.

Our goal in this work is to apply the methodology introduced above to the

gg ! h process, which is structurally very similar to the photon case, with the crucial

di↵erence that the external gluons carry color and are not infrared-safe asymptotic
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3-step matching procedure:

(gluon form factor)

[Liu, MN, Schnubel, Wang 2022]
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HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
Bare factorization theorem
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SM LEFTSCET-2

SCET-1

µ ⇠ Mh
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HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
Bare factorization theorem 

▸ Convolution integrals in the second and third term are endpoint 
divergent for  and z → 0 ℓ± → ∞

9’

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS
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HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
Refactorization-based subtraction (RBS) scheme 

▸ Exact D-dimensional refactorization conditions ensure that the 
integrands of the second and third terms are identical in the 
singular regions (to all orders of perturbation theory):
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[Liu, MN 2020; also: Beneke et al. 2020]
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Renormalized factorization theorem in the RBS scheme 

▸ Provides basis for systematic resummations of large double (and 
single) logarithms  with  

▸ Have succeeded to sum the towers of these logarithms for  
(NLL’ approximation); result expressed in terms of hypergeometric 
functions 2F2 and Dawson integral D(z)

∼ αn
s ln2n−k(−M2

h /m2
b) k ≥ 0
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[Liu, MN, Schnubel, Wang 2022]
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Form factor  in the time-like region: 

 significant reduction of the perturbative uncertainty of light-quark 
indices contributions to the gluon-fusion cross section!

Fgg(q2)

⇒

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS
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Figure 7. Resummed T3 at LL (black), NLL (blue) and NLL0 (red) accuracy. We fix

the strong coupling constant at ↵s(Mh) and vary the hard scale µ2

h
= q2 entering the

large logarithms L and expansion parameter ⇢. The upper panel shows T3 for q2 > 0, the

lower two panels give the real and imaginary part for q2 < 0. NLL(0) corrections become

increasingly more important for q2-values further away from its physical value q2 = �M2

h
.

the plots for both q2 > 0 (upper panel) and real and imaginary part for q2 < 0

(lower panels). NLL(0) corrections become increasingly more significant the further

one takes q2 from its physical value q2 = �M2

h
chosen in the resummation.

7 Conclusions

In this work, we have successfully used SCET to derive the factorization theorem

for the Higgs-boson production process gg ! h via light quark loops. We followed

the steps of [4, 5], where the methodology was applied to the Higgs decay h ! ��

via a light quark loop. This has been achieved at the bare level by adopting the

RBS scheme. In this way, we are able to write the bare factorization theorem such

that no endpoint divergences occur, without the need to introduce an additional

regulator apart from dimensional regularization. This is possible by the use of two

refactorization conditions that relate component functions of the second term of the

factorization theorem that are in the endpoint region to those of the third term.

This procedure subtracts the divergent parts in between the two terms. However,

30

Re Fgg(q2) Im Fgg(q2)

M2
h M2

h

[Liu, Penin 2017]

[Liu, Mecay, MN, Wang 2020; 
iAnastasiou, Penin 2020]

[Liu, MN, Schnubel, Wang 2022]



HEP2023 ChileMatthias Neubert  — 

Decay  is another example of a power-                   
suppressed process, because the amplitude is                                 
chirally suppressed by ; rate ratios for                                   

 can provides tests of lepton universality 

▸ Effective weak Hamiltonian at : 

▸ In QCD, decay amplitude is given in terms of  times the B-meson 
decay constant  , defined by:

B− → ℓ−ν̄ℓ

mℓ /mb
ℓ = e, μ, τ

μ ∼ mb

Vub
fB

QED CORRECTIONS IN LEPTONIC B DECAY

13
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We derive a factorization theorem for the structure-dependent QED e↵ects in the weak exclu-
sive process B

� ! `
�
⌫̄`, i.e., e↵ects probing the internal structure of the B meson. The derivation

requires a careful treatment of endpoint-divergent convolutions common to subleading-power factor-
ization formulas. We find that the decay amplitude is sensitive to two- and three-particle light-cone
distribution amplitudes of the B meson as well as to a new hadronic parameter F (µ,⇤), which
generalizes the notion of the B-meson decay constant in the presence of QED e↵ects. This is the
first derivation of a subleading-power factorization theorem in which the soft functions are non-
perturbative hadronic matrix elements.

Exclusive B-meson decays are powerful probes of the
flavor sector and of physics beyond the Standard Model.
In order to match the increasing experimental accuracy
in several decay channels, a reliable assessment of QED
corrections is desirable. In recent years, these received
considerable attention, especially in the context of lep-
tonic and semi-leptonic B decays. In most cases, QED
corrections were treated via the inclusion of soft-photon
emissions, under the hypothesis that the leading correc-
tions can be described by photons unable to probe the
internal meson structure [1, 2]. This assumption is in
direct contradiction with the observation that structure-
dependent QED corrections constitute an important con-
tribution to the decays Bd,s ! µ+µ� [3, 4].

In this work, we present the factorization formula for
the exclusive B�

! `�⌫̄` decay including virtual one-
loop QED corrections. This process can be used to
determine the CKM matrix element Vub and to test
lepton-flavor universality, as Belle II can measure the
` = µ, ⌧ channels [5]. We focus here on the case ` = µ.
Due to the chirality-suppressed nature of the decay, this
process is of next-to-leading power (NLP) in the ex-
pansion in the ratio ⇤QCD/mB . Factorization formulas
at subleading power are typically plagued by endpoint-
divergent convolution integrals, requiring a careful sub-
traction and rearrangement between di↵erent contribu-
tions. The “refactorization-based subtraction (RBS)
scheme” introduced in [6, 7] for the derivation of the fac-
torization theorem for the Higgs-boson decay h ! ��
via b-quark loops provides a systematic method to deal
with endpoint divergences and establish factorization at
NLP. The RBS scheme has also been applied successfully
to Higgs production in gluon-gluon fusion [8, 9] and to
the “o↵-diagonal gluon thrust” in e+e� collisions [10].
The present work marks the first time the problem is en-
countered and treated in the context of B physics. An
important peculiarity in this case is the fact that the nec-
essary rearrangements involve objects that are genuinely
non-perturbative, giving rise to a new type of hadronic
matrix elements. We believe this is a generic feature of
exclusive B-meson decays beyond leading power.

Below the electroweak scale, the e↵ective weak La-
grangian describing the decays B�

! `�⌫̄` is given by

Le↵ = �
4GF
p
2

KEW(µ)Vub (ū�
µPLb)(¯̀�µPL⌫`) . (1)

When electroweak corrections are neglected KEW(µ) =
1, and all hadronic e↵ects are encoded in the B-meson
matrix element of the quark current,

h0| ū�µ�5 b |B
�(v)i = imBfB vµ . (2)

Here vµ denotes the four-velocity of the B meson and fB
its decay constant. The situation becomes significantly
more complicated when QED e↵ects are taken into ac-
count. In this case KEW(µ) 6= 1 [11] and the operator
in (1) has a non-trivial scale dependence, which compen-
sates that of KEW, given by [12]

dKEW(µ)

d lnµ
= Q`Qu

3↵

2⇡
KEW(µ) . (3)

More profoundly, the B-meson decay constant loses its
universal meaning and its definition must be generalized,
because the flavor-changing quark current is not gauge
invariant with respect to QED interactions [13]. The
simple factorization of the four-fermion operator into a
quark and a lepton current, with no interactions between
them, no longer holds. While in QCD physical states
are color neutral, both the B meson and the charged
lepton carry electric charges, and thus electromagnetic
interactions inevitably connect the two currents.
In the presence of QED e↵ects, the B�

! `�⌫̄` ma-
trix element of the four-fermion operator in (1) is sensi-
tive to six di↵erent energy scales. The first four are the
scale mb setting the large mass of the decaying B me-
son, the intermediate “hard-collinear” scale

p
mb⇤QCD

at which the internal structure of the meson is probed
by virtual photons, the scale ⇤QCD of non-perturbative
hadronic interactions in the meson, and the lepton mass
m`. In order to obtain an infrared (IR) safe observable,
it is necessary to define the decay rate for the process
B�

! `�⌫̄` (�), allowing for the emission of real soft

MITP-22-111, TUM-HEP-1449/22

Structure-Dependent QED E↵ects in Exclusive B Decays at Subleading Power

Claudia Cornellaa,⇤ Matthias Königb,† and Matthias Neuberta,c‡
aPRISMA+ Cluster of Excellence & MITP, Johannes Gutenberg University, 55099 Mainz, Germany

bPhysik Department T31, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
cDepartment of Physics & LEPP, Cornell University, Ithaca, NY 14853, U.S.A.

We derive a factorization theorem for the structure-dependent QED e↵ects in the weak exclu-
sive process B

� ! `
�
⌫̄`, i.e., e↵ects probing the internal structure of the B meson. The derivation

requires a careful treatment of endpoint-divergent convolutions common to subleading-power factor-
ization formulas. We find that the decay amplitude is sensitive to two- and three-particle light-cone
distribution amplitudes of the B meson as well as to a new hadronic parameter F (µ,⇤), which
generalizes the notion of the B-meson decay constant in the presence of QED e↵ects. This is the
first derivation of a subleading-power factorization theorem in which the soft functions are non-
perturbative hadronic matrix elements.

Exclusive B-meson decays are powerful probes of the
flavor sector and of physics beyond the Standard Model.
In order to match the increasing experimental accuracy
in several decay channels, a reliable assessment of QED
corrections is desirable. In recent years, these received
considerable attention, especially in the context of lep-
tonic and semi-leptonic B decays. In most cases, QED
corrections were treated via the inclusion of soft-photon
emissions, under the hypothesis that the leading correc-
tions can be described by photons unable to probe the
internal meson structure [1, 2]. This assumption is in
direct contradiction with the observation that structure-
dependent QED corrections constitute an important con-
tribution to the decays Bd,s ! µ+µ� [3, 4].

In this work, we present the factorization formula for
the exclusive B�

! `�⌫̄` decay including virtual one-
loop QED corrections. This process can be used to
determine the CKM matrix element Vub and to test
lepton-flavor universality, as Belle II can measure the
` = µ, ⌧ channels [5]. We focus here on the case ` = µ.
Due to the chirality-suppressed nature of the decay, this
process is of next-to-leading power (NLP) in the ex-
pansion in the ratio ⇤QCD/mB . Factorization formulas
at subleading power are typically plagued by endpoint-
divergent convolution integrals, requiring a careful sub-
traction and rearrangement between di↵erent contribu-
tions. The “refactorization-based subtraction (RBS)
scheme” introduced in [6, 7] for the derivation of the fac-
torization theorem for the Higgs-boson decay h ! ��
via b-quark loops provides a systematic method to deal
with endpoint divergences and establish factorization at
NLP. The RBS scheme has also been applied successfully
to Higgs production in gluon-gluon fusion [8, 9] and to
the “o↵-diagonal gluon thrust” in e+e� collisions [10].
The present work marks the first time the problem is en-
countered and treated in the context of B physics. An
important peculiarity in this case is the fact that the nec-
essary rearrangements involve objects that are genuinely
non-perturbative, giving rise to a new type of hadronic
matrix elements. We believe this is a generic feature of
exclusive B-meson decays beyond leading power.

Below the electroweak scale, the e↵ective weak La-
grangian describing the decays B�

! `�⌫̄` is given by

Le↵ = �
4GF
p
2

KEW(µ)Vub (ū�
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interactions inevitably connect the two currents.
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trix element of the four-fermion operator in (1) is sensi-
tive to six di↵erent energy scales. The first four are the
scale mb setting the large mass of the decaying B me-
son, the intermediate “hard-collinear” scale

p
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at which the internal structure of the meson is probed
by virtual photons, the scale ⇤QCD of non-perturbative
hadronic interactions in the meson, and the lepton mass
m`. In order to obtain an infrared (IR) safe observable,
it is necessary to define the decay rate for the process
B�

! `�⌫̄` (�), allowing for the emission of real soft

2

photons with energies below a resolution scale Es. The
threshold Es and a related scale (m`/mB)Es complete
the list of relevant scales. We have analyzed the factor-
ization of these scales using a multi-step matching proce-
dure, in which the e↵ective weak Lagrangian is matched
onto two versions of soft-collinear e↵ective theory [14–17],
Le↵ ! SCET-1 ! SCET-2. In a final step, the SCET-2
operators are matched onto a low-energy e↵ective theory
consisting of products of Wilson lines, which are needed
to account for soft photon emissions.

In this Letter, we discuss the more intricate factoriza-
tion properties of the decay amplitude above the scale
Es, which is sensitive to virtual photon exchange only.
We have established the factorization theorem

A
virtual
B!`⌫̄ =

X

j

HjSjKj +
X

i

Hi ⌦ Ji ⌦ Si ⌦Ki , (4)

where the hard functionsHi account for matching correc-
tions at the scale mb, the jet functions Ji encode match-
ing corrections at the scale

p
mb⇤QCD, and the soft func-

tions are hadronic matrix elements of the B meson de-
fined in heavy-quark e↵ective theory (HQET) [18–21].
The collinear functions Ki describe the leptonic matrix
elements, encoding the dependence on the scale m`. The
first set of terms arise from SCET-1 operators with a soft
spectator quark, whereas the second set descents from
operators in which the spectator quark is described by
a hard-collinear field, carrying a significant fraction of
the charged-lepton momentum. The symbol ⌦ indicates
that the product of component functions must be under-
stood as a convolution, since some of the functions share
common momentum variables, over which one must inte-
grate. In SCET-2, interactions between soft and collinear
particles can be been eliminated at the Lagrangian level
using field redefinitions [15, 22]. The remnants of these

interactions appear in the form of soft Wilson lines S(f)
n

for each charged fermion f , where the light-like vector
nµ is aligned with the direction of the muon.
The appearance of a hard-collinear scale between mb

and ⇤QCD is an important feature of the factorization
formula. Electromagnetic radiation with virtuality q2 ⇠

mb⇤QCD emitted from the muon can recoil against the
meson and probe its internal structure. This e↵ect arises
from the interactions between soft and collinear particles
[23–25], which in SCET-1 are mediated by the exchange
of a virtual photon between the muon and the soft spec-
tator quark in the B meson, as illustrated in Figure 1.
After matching onto SCET-2 this gives rise to non-local
operators, whose component fields have light-like sepa-
ration. Their matrix elements define the B-meson light-
cone distribution amplitudes (LCDAs) [26–29]. From a
systematic analysis of the operators contributing to the
decay at O(⇤QCD/mb), we find that the amplitude is sen-
sitive to a hadronic parameter F generalizing the concept
of the B-meson decay constant, as well as to two- and
three-particle LCDAs.

FIG. 1. Examples of SCET-1 loop diagrams generating
structure-dependent QED corrections at the hard-collinear
scale. The up-quark and muon leaving the weak-interaction
operator carry fractions x and x̄ = 1 � x of the large com-
ponent n̄ · p` of the muon momentum. The resulting con-
tributions involve convolutions with a two-particle (left) and
three-particle (right) LCDA of the B meson.

A natural definition of the parameter F would be in
terms of the B-meson matrix element of the operator

OA = n̄µ ūs�
µPLhv S

(`)†
n , (5)

where us denotes a soft quark field, hv the e↵ective b-
quark field in HQET, and n̄µ is a light-like reference vec-
tor in the direction of the neutrino momentum, which
appears in the evaluation of the leptonic matrix element.
The soft Wilson line arises from the decoupling of soft
interactions from the muon. It ensures that the operator
is gauge invariant under both QCD and QED. This nec-
essarily introduces a process dependence in F , since the
Wilson line knows about the existence of a single charged
particle with charge Q` in the final state [4]. We would
then define

h0|OA |B�(v)i = �
i

2

p
mB F v · n̄ , (6)

where v · n̄ = 1 with our choice of reference vectors, and
the right-hand side depends on mB only via the rela-
tivistic normalization of the meson state. Comparison
with (2) shows that F ⇡

p
mB fB up to radiative and

power corrections. However, in the presence of QED cor-
rections the above definition is problematic, because the
operator OA is ill defined. In fact, its anomalous dimen-
sion exhibits a sensitivity to IR regulators, which must be
removed with a subtraction, for example by dividing the
operator by a vacuum matrix element of suitably defined
Wilson lines [4, 13]. Still, there exists another problem
with the factorization formula (4), as some of the con-
volution integrals su↵er from endpoint divergences. This
is a common problem of NLP factorization theorems [6–
8, 10, 30–37]. Neglecting corrections of O(↵↵s), the di-
vergent convolutions are those involving the hard and
jet functions. These divergences are troublesome, be-
cause they give rise to 1/✏ poles that cannot be removed
by renormalizing the hard and jet functions individually,
and hence break the desired factorization of scales. In-
terestingly, we find that both problems are solved simul-
taneously: removing the endpoint divergences using the
RBS scheme redefines the soft operator OA in such a way
that it becomes well-defined.

effective 4-fermion interaction 
from W-boson exchange
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▸ Problem becomes interesting when QED                               
corrections are included, because virtual                                     
photons can resolve the inner structure                                                   
of the B meson 

▸ Quark current  is not gauge invariant under QED; to fix this, 
one must add a Wilson line accounting for soft photon interactions 
with the charged lepton:  

▸ Two problems:  

▸ operator is ill-defined (IR sensitive anomalous dimension) 

▸ appearance of endpoint divergences

ū γμPL b

ū γμPL b S(ℓ)†
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photons with energies below a resolution scale Es. The
threshold Es and a related scale (m`/mB)Es complete
the list of relevant scales. We have analyzed the factor-
ization of these scales using a multi-step matching proce-
dure, in which the e↵ective weak Lagrangian is matched
onto two versions of soft-collinear e↵ective theory [14–17],
Le↵ ! SCET-1 ! SCET-2. In a final step, the SCET-2
operators are matched onto a low-energy e↵ective theory
consisting of products of Wilson lines, which are needed
to account for soft photon emissions.
In this Letter, we discuss the more intricate factoriza-

tion properties of the decay amplitude above the scale
Es, which is sensitive to virtual photon exchange only.
We have established the factorization theorem

A
virtual
B!`⌫̄ =

X

j

HjSjKj +
X

i

Hi ⌦ Ji ⌦ Si ⌦Ki , (4)

where the hard functionsHi account for matching correc-
tions at the scale mb, the jet functions Ji encode match-
ing corrections at the scale

p
mb⇤QCD, and the soft func-

tions are hadronic matrix elements of the B meson de-
fined in heavy-quark e↵ective theory (HQET) [18–21].
The collinear functions Ki describe the leptonic matrix
elements, encoding the dependence on the scale m`. The
first set of terms arise from SCET-1 operators with a soft
spectator quark, whereas the second set descents from
operators in which the spectator quark is described by
a hard-collinear field, carrying a significant fraction of
the charged-lepton momentum. The symbol ⌦ indicates
that the product of component functions must be under-
stood as a convolution, since some of the functions share
common momentum variables, over which one must inte-
grate. In SCET-2, interactions between soft and collinear
particles can be been eliminated at the Lagrangian level
using field redefinitions [15, 22]. The remnants of these

interactions appear in the form of soft Wilson lines S(f)
n

for each charged fermion f , where the light-like vector
nµ is aligned with the direction of the muon.
The appearance of a hard-collinear scale between mb

and ⇤QCD is an important feature of the factorization
formula. Electromagnetic radiation with virtuality q2 ⇠

mb⇤QCD emitted from the muon can recoil against the
meson and probe its internal structure. This e↵ect arises
from the interactions between soft and collinear particles
[23–25], which in SCET-1 are mediated by the exchange
of a virtual photon between the muon and the soft spec-
tator quark in the B meson, as illustrated in Figure 1.
After matching onto SCET-2 this gives rise to non-local
operators, whose component fields have light-like sepa-
ration. Their matrix elements define the B-meson light-
cone distribution amplitudes (LCDAs) [26–29]. From a
systematic analysis of the operators contributing to the
decay at O(⇤QCD/mb), we find that the amplitude is sen-
sitive to a hadronic parameter F generalizing the concept
of the B-meson decay constant, as well as to two- and
three-particle LCDAs.

FIG. 1. Examples of SCET-1 loop diagrams generating
structure-dependent QED corrections at the hard-collinear
scale. The up-quark and muon leaving the weak-interaction
operator carry fractions x and x̄ = 1 � x of the large com-
ponent n̄ · p` of the muon momentum. The resulting con-
tributions involve convolutions with a two-particle (left) and
three-particle (right) LCDA of the B meson.

A natural definition of the parameter F would be in
terms of the B-meson matrix element of the operator

OA = n̄µ ūs�
µPLhv S

(`)†
n , (5)

where us denotes a soft quark field, hv the e↵ective b-
quark field in HQET, and n̄µ is a light-like reference vec-
tor in the direction of the neutrino momentum, which
appears in the evaluation of the leptonic matrix element.
The soft Wilson line arises from the decoupling of soft
interactions from the muon. It ensures that the operator
is gauge invariant under both QCD and QED. This nec-
essarily introduces a process dependence in F , since the
Wilson line knows about the existence of a single charged
particle with charge Q` in the final state [4]. We would
then define

h0|OA |B�(v)i = �
i

2

p
mB F v · n̄ , (6)

where v · n̄ = 1 with our choice of reference vectors, and
the right-hand side depends on mB only via the rela-
tivistic normalization of the meson state. Comparison
with (2) shows that F ⇡

p
mB fB up to radiative and

power corrections. However, in the presence of QED cor-
rections the above definition is problematic, because the
operator OA is ill defined. In fact, its anomalous dimen-
sion exhibits a sensitivity to IR regulators, which must be
removed with a subtraction, for example by dividing the
operator by a vacuum matrix element of suitably defined
Wilson lines [4, 13]. Still, there exists another problem
with the factorization formula (4), as some of the con-
volution integrals su↵er from endpoint divergences. This
is a common problem of NLP factorization theorems [6–
8, 10, 30–37]. Neglecting corrections of O(↵↵s), the di-
vergent convolutions are those involving the hard and
jet functions. These divergences are troublesome, be-
cause they give rise to 1/✏ poles that cannot be removed
by renormalizing the hard and jet functions individually,
and hence break the desired factorization of scales. In-
terestingly, we find that both problems are solved simul-
taneously: removing the endpoint divergences using the
RBS scheme redefines the soft operator OA in such a way
that it becomes well-defined.

[Cornella, König, MN 2022; also: Beneke, Bobeth, Szafron 2018]

[Beneke, Bobeth, Szafron 2019]

[Beneke, Böer, Toelstede, Vos 2020]



HEP2023 ChileMatthias Neubert  — 

SCET factorization theorem 

▸ Both problems have a common solution!

QED CORRECTIONS IN LEPTONIC B DECAY

15

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

SM LEFTSCET-2

SCET-1

Hj

Hi

Si, j, Ki, j

Ji
µ ⇠ mb
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B-meson matrix  elements of 
soft quark operators Oi

lepton matrix elements 
(collinear fields)

2

photons with energies below a resolution scale Es. The
threshold Es and a related scale (m`/mB)Es complete
the list of relevant scales. We have analyzed the factor-
ization of these scales using a multi-step matching proce-
dure, in which the e↵ective weak Lagrangian is matched
onto two versions of soft-collinear e↵ective theory [14–17],
Le↵ ! SCET-1 ! SCET-2. In a final step, the SCET-2
operators are matched onto a low-energy e↵ective theory
consisting of products of Wilson lines, which are needed
to account for soft photon emissions.

In this Letter, we discuss the more intricate factoriza-
tion properties of the decay amplitude above the scale
Es, which is sensitive to virtual photon exchange only.
We have established the factorization theorem

A
virtual
B!`⌫̄ =

X

j

HjSjKj +
X

i

Hi ⌦ Ji ⌦ Si ⌦Ki , (4)

where the hard functionsHi account for matching correc-
tions at the scale mb, the jet functions Ji encode match-
ing corrections at the scale

p
mb⇤QCD, and the soft func-

tions are hadronic matrix elements of the B meson de-
fined in heavy-quark e↵ective theory (HQET) [18–21].
The collinear functions Ki describe the leptonic matrix
elements, encoding the dependence on the scale m`. The
first set of terms arise from SCET-1 operators with a soft
spectator quark, whereas the second set descents from
operators in which the spectator quark is described by
a hard-collinear field, carrying a significant fraction of
the charged-lepton momentum. The symbol ⌦ indicates
that the product of component functions must be under-
stood as a convolution, since some of the functions share
common momentum variables, over which one must inte-
grate. In SCET-2, interactions between soft and collinear
particles can be been eliminated at the Lagrangian level
using field redefinitions [15, 22]. The remnants of these

interactions appear in the form of soft Wilson lines S(f)
n

for each charged fermion f , where the light-like vector
nµ is aligned with the direction of the muon.
The appearance of a hard-collinear scale between mb

and ⇤QCD is an important feature of the factorization
formula. Electromagnetic radiation with virtuality q2 ⇠

mb⇤QCD emitted from the muon can recoil against the
meson and probe its internal structure. This e↵ect arises
from the interactions between soft and collinear particles
[23–25], which in SCET-1 are mediated by the exchange
of a virtual photon between the muon and the soft spec-
tator quark in the B meson, as illustrated in Figure 1.
After matching onto SCET-2 this gives rise to non-local
operators, whose component fields have light-like sepa-
ration. Their matrix elements define the B-meson light-
cone distribution amplitudes (LCDAs) [26–29]. From a
systematic analysis of the operators contributing to the
decay at O(⇤QCD/mb), we find that the amplitude is sen-
sitive to a hadronic parameter F generalizing the concept
of the B-meson decay constant, as well as to two- and
three-particle LCDAs.

FIG. 1. Examples of SCET-1 loop diagrams generating
structure-dependent QED corrections at the hard-collinear
scale. The up-quark and muon leaving the weak-interaction
operator carry fractions x and x̄ = 1 � x of the large com-
ponent n̄ · p` of the muon momentum. The resulting con-
tributions involve convolutions with a two-particle (left) and
three-particle (right) LCDA of the B meson.

A natural definition of the parameter F would be in
terms of the B-meson matrix element of the operator

OA = n̄µ ūs�
µPLhv S

(`)†
n , (5)

where us denotes a soft quark field, hv the e↵ective b-
quark field in HQET, and n̄µ is a light-like reference vec-
tor in the direction of the neutrino momentum, which
appears in the evaluation of the leptonic matrix element.
The soft Wilson line arises from the decoupling of soft
interactions from the muon. It ensures that the operator
is gauge invariant under both QCD and QED. This nec-
essarily introduces a process dependence in F , since the
Wilson line knows about the existence of a single charged
particle with charge Q` in the final state [4]. We would
then define

h0|OA |B�(v)i = �
i

2

p
mB F v · n̄ , (6)

where v · n̄ = 1 with our choice of reference vectors, and
the right-hand side depends on mB only via the rela-
tivistic normalization of the meson state. Comparison
with (2) shows that F ⇡

p
mB fB up to radiative and

power corrections. However, in the presence of QED cor-
rections the above definition is problematic, because the
operator OA is ill defined. In fact, its anomalous dimen-
sion exhibits a sensitivity to IR regulators, which must be
removed with a subtraction, for example by dividing the
operator by a vacuum matrix element of suitably defined
Wilson lines [4, 13]. Still, there exists another problem
with the factorization formula (4), as some of the con-
volution integrals su↵er from endpoint divergences. This
is a common problem of NLP factorization theorems [6–
8, 10, 30–37]. Neglecting corrections of O(↵↵s), the di-
vergent convolutions are those involving the hard and
jet functions. These divergences are troublesome, be-
cause they give rise to 1/✏ poles that cannot be removed
by renormalizing the hard and jet functions individually,
and hence break the desired factorization of scales. In-
terestingly, we find that both problems are solved simul-
taneously: removing the endpoint divergences using the
RBS scheme redefines the soft operator OA in such a way
that it becomes well-defined.

[Cornella, König, MN 2022]



HEP2023 ChileMatthias Neubert  — 

Two most important contributions: 

where (with ):n̄ ∥ pν

QED CORRECTIONS IN LEPTONIC B DECAY

16

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS
3

The RBS scheme o↵ers a systematic procedure for
dealing with such endpoint divergences. In a first step,
they are removed by performing plus-type subtractions
of the integrand, i.e.

Hi ⌦ Ji ⌘

Z 1

0
dxHi(mb, x) Ji(mb!, x)

!

Z 1

0
dx

h
Hi(mb, x) Ji(mb!, x)

� ✓(�� x) JHi(mb, x)KJJi(mb!, x)K
i
,

(7)

where x is a shared longitudinal momentum fraction de-
fined in Figure 1. The singular limit is x ! 0, corre-
sponding to the region in which the virtual spectator
quark becomes soft. The double brackets indicate that
one needs to retain only the leading singular terms in
the expressions for the hard and jet functions. More ac-
curately, when x = O(⇤QCD/mb) the quark and photon
propagators in the loop become soft and should no longer
be described using hard-collinear fields. We introduce a
parameter 0 < � < 1 to subtract these contributions
(see also [10]). The variable ! denotes the n · pu com-
ponent of the soft spectator momentum, which the jet
and soft functions share. (In some cases there can be
more than one such variable.) The subtraction term re-
moves the endpoint divergence by construction, but of
course it must be added back in a consistent way. This
is done using exact, D-dimensional refactorization condi-
tions [6, 7, 36], which govern the structure of the compo-
nent functions in the singular limits. In our case, these
conditions are of the form

JHi(mb, x)K = H 0
i(mb)S

0
i(!

0) ,

JJi(mb!, x)K = mb S
00
i (!,!

0) ,
(8)

where H 0
i are new hard functions, while S0

i, S
00
i are new

soft functions, which depend on the variable !0
⌘ xmb.

The term that needs to be added back thus takes the
form of a hard matching coe�cient times a soft function,

Z
d!

Z �

0
dx JHi(mb, x)KJJi(mb!, x)KSi(!)

= �H 0
i

Z
d!

Z 1

⇤
d!0 Ŝi(!,!

0) ,

(9)

where ⇤ = �mb, and we have defined Ŝi = SiS0
iS

00
i and

added a scaleless integral, which vanishes in dimensional
regularization. After adding back this term, it can be
combined with other terms of similar form.

Let us illustrate this procedure for the soft operators
relevant for the subtraction of endpoint divergences in
our problem. These are the local operator OA in (5) and
the associated non-local operator

OB(!) =

Z
d!

2⇡
ei!t ūs(tn)[tn, 0] /̄nPLhv(0)S

(`)†
n (0) .

(10)

Here the quark fields are separated by a light-like dis-
tance, and [tn, 0] denotes a soft Wilson-line segment con-
necting the two fields. There is also a third operator
giving rise to a three-particle LCDA, which we omit here
for simplicity. The contribution of these two operators
to the decay amplitude can be written in the form

AB!`⌫̄ = �
4GF
p
2

KEW(µ)Vub
m`

mb
KA(m`) ū(p`)PLv(p⌫)

·


HA(mb)SA+

Z
d!

Z 1

0
dxHB(mb, x)JB(mb!, x)SB(!)

�
,

(11)
where SA = �

i
2

p
mBF and HA,B = 1+O(↵s,↵). Start-

ing at one-loop order HB contains logarithmic singulari-
ties at x = 0 (⇠ x�n✏ in the bare function). The collinear
functions for the two contributions are equal and normal-
ized so that KA = KB = 1 + O(↵). At one-loop order,
the (bare) jet function is given by

JB(mb!, x) = �Q`Qu
↵

2⇡

e✏�E �(✏)

1� ✏

✓
1

x
+ 1� 2✏

◆

·

✓
µ2

mb!x(1� x)

◆✏

.

(12)

The refactorization conditions for HB and JB read

JHB(mb, x)K = HA(mb)S
0
B(!

0) ,

JJB(mb!, x)K = mbS
00
B(!,!

0) ,
(13)

where !0 = xmb and

S00
B(!,!

0) = �Q`Qu
↵

2⇡

e✏�E �(✏)

1� ✏

1

!0

✓
µ2

!!0

◆✏

. (14)

Expressing the B-meson matrix element of the non-local
operator OB(!) in terms of the LCDA ��(!) [26], we
find that at one-loop order the subtraction term in (9) is
given by

HASA Q`Qu
↵

2⇡

e✏�E �(✏)

1� ✏

Z
d!��(!)

Z 1

⇤

d!0

!0

✓
µ2

!!0

◆✏

.

(15)
This result suggests that we should combine this term
with the matrix element of the operator OA. In all pre-
vious applications of the RBS scheme, the soft functions
were perturbatively calculable, and the e↵ect of the sub-
traction terms could be worked out order by order in ↵s.
In the present case, we apply the refactorization con-
ditions for the first time in a non-perturbative context,
where the soft functions are hadronic matrix elements,
which cannot be calculated using short-distance meth-
ods. Nevertheless, up to a factor (�HA), we can identify
expression (15) as the part of the one-loop matrix ele-
ment SA of the operator OA where the n̄ · k component
of the momentum of a photon emitted from the soft Wil-

son line S(`)†
n satisfies n̄ · k > ⇤. This is illustrated in

Figure 2. In the region where n̄ · k � ⇤QCD, the photon

quark fields at light like separation                             
 B-meson light-cone distribution amplitudes→

∼ x−1−nϵ∼ x−nϵ

OA = n̄µ ūs�
µ
PLbv S

(`)†
n
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FIG. 2. One-loop contribution to the matrix element of the
soft operator OA in the region where n̄ · k > ⇤. The second
diagram is scaleless for ⇤ � ⇤QCD and vanishes.

cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.
The subtraction performed in (16) cures the IR prob-

lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
i
p
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2
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At one-loop order, we obtain the evolution equation
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When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].
We are now ready to present our final result. The

B�
! `�⌫̄` decay amplitude including virtual QED cor-

rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub

m`

mb

p
mB F (µ,mb)
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.
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cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S
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n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.
The subtraction performed in (16) cures the IR prob-

lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].
We are now ready to present our final result. The
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! `�⌫̄` decay amplitude including virtual QED cor-

rections can be written as
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1
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h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.
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cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.
The subtraction performed in (16) cures the IR prob-

lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
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At one-loop order, we obtain the evolution equation

dF (µ,⇤)

d lnµ
=


CF

3↵s

4⇡
+
�
Q2

b +Q2
`

� 3↵
4⇡

�
F (µ,⇤) . (18)

When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].
We are now ready to present our final result. The

B�
! `�⌫̄` decay amplitude including virtual QED cor-

rections can be written as
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1
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h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.
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cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.
The subtraction performed in (16) cures the IR prob-

lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].
We are now ready to present our final result. The
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! `�⌫̄` decay amplitude including virtual QED cor-

rections can be written as
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
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 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.
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cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
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where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.
The subtraction performed in (16) cures the IR prob-

lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].
We are now ready to present our final result. The
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rections can be written as
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1
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i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.

�HA(mb)
⌘
S
(mb)
A
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FIG. 2. One-loop contribution to the matrix element of the
soft operator OA in the region where n̄ · k > ⇤. The second
diagram is scaleless for ⇤ � ⇤QCD and vanishes.

cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.

The subtraction performed in (16) cures the IR prob-
lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
i
p
mB

2
F (µ,⇤) . (17)

At one-loop order, we obtain the evolution equation

dF (µ,⇤)

d lnµ
=


CF

3↵s

4⇡
+

�
Q2

b +Q2
`

� 3↵
4⇡

�
F (µ,⇤) . (18)

When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)

AB!`⌫̄ = �
4GF
p
2

KEWVub
m`
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KA(m`) ū(p`)PLv(p⌫)

·

⇣
HA(mb)��HA(⇤)
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�
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].

We are now ready to present our final result. The
B�

! `�⌫̄` decay amplitude including virtual QED cor-
rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub
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mb

p
mB F (µ,mb)

· ū(p`)PLv(p⌫)
X

j

Mj(µ) , (20)

where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.

with  n̄ ⋅ k ≤ mb
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FIG. 2. One-loop contribution to the matrix element of the
soft operator OA in the region where n̄ · k > ⇤. The second
diagram is scaleless for ⇤ � ⇤QCD and vanishes.

cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.

The subtraction performed in (16) cures the IR prob-
lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
i
p
mB

2
F (µ,⇤) . (17)

At one-loop order, we obtain the evolution equation

dF (µ,⇤)

d lnµ
=


CF
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+
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b +Q2
`

� 3↵
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When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)

AB!`⌫̄ = �
4GF
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2

KEWVub
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KA(m`) ū(p`)PLv(p⌫)
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⇣
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⌘
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+
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0
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].

We are now ready to present our final result. The
B�

! `�⌫̄` decay amplitude including virtual QED cor-
rections can be written as

A
virtual
B!`⌫̄ = i

p
2GF KEW(µ)Vub

m`

mb

p
mB F (µ,mb)

· ū(p`)PLv(p⌫)
X

j

Mj(µ) , (20)

where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order

M2�part.(µ) = 1 +
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.
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FIG. 2. One-loop contribution to the matrix element of the
soft operator OA in the region where n̄ · k > ⇤. The second
diagram is scaleless for ⇤ � ⇤QCD and vanishes.

cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.

The subtraction performed in (16) cures the IR prob-
lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
i
p
mB

2
F (µ,⇤) . (17)

At one-loop order, we obtain the evolution equation

dF (µ,⇤)

d lnµ
=
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When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)

AB!`⌫̄ = �
4GF
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KEWVub
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⇣
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].

We are now ready to present our final result. The
B�

! `�⌫̄` decay amplitude including virtual QED cor-
rections can be written as

A
virtual
B!`⌫̄ = i
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2GF KEW(µ)Vub
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p
mB F (µ,mb)

· ū(p`)PLv(p⌫)
X
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Mj(µ) , (20)

where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.

4

FIG. 2. One-loop contribution to the matrix element of the
soft operator OA in the region where n̄ · k > ⇤. The second
diagram is scaleless for ⇤ � ⇤QCD and vanishes.

cannot be part of the B meson and hence it must be at-
tached to one of the quarks. As long as ⇤ � ⇤QCD, this
contribution can be calculated in perturbation theory.
This is similar to the calculation of the scale dependence
of hadronic objects such as PDFs for values µ � ⇤QCD.
The subtraction term therefore removes these contribu-
tions in the matrix element of OA. We are thus led to
define the subtracted soft operator

O(⇤)
A = ūs /̄nPLhv ✓(⇤� in̄ ·Ds)S

(`)†
n , (16)

where the soft covariant derivative ensures gauge invari-
ance in the presence of the ✓-function.

The subtraction performed in (16) cures the IR prob-
lem mentioned earlier. We find that the anomalous di-
mension of O(⇤)

A is independent of IR regulators and the
operator can be renormalized in the usual way. Amend-
ing relation (6), we now define the renormalized param-
eter F via

S(⇤)
A = h0|O(⇤)

A (µ) |B�(v)i = �
i
p
mB

2
F (µ,⇤) . (17)

At one-loop order, we obtain the evolution equation

dF (µ,⇤)

d lnµ
=
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+
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When the subtraction term is combined with the origi-

nal contribution of the operator OA, we obtain from (11)
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The hard matching coe�cient HA receives an additional

contribution �HA, because S(⇤)
A contains a “hard” con-

tribution at the scale ⇤ � ⇤QCD, which must be sub-
tracted in the matching. Note that the matching co-
e�cient (HA � �HA), the subtracted convolution and

the soft function S(⇤)
A depend on the choice of ⇤, and

there is no choice for which all of these objects depend
only on their natural scales. Following [6], we choose
⇤ = mb and hence � = 1 to eliminate the second scale
from (HA��HA) and the subtracted convolution, at the
expense of introducing the scale mb in the definition of F
in (17). With this choice, the factorization theorem (19)
is analogous to the one in h ! �� decay derived in [6, 7].

We are now ready to present our final result. The
B�

! `�⌫̄` decay amplitude including virtual QED cor-
rections can be written as

A
virtual
B!`⌫̄ = i
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2GF KEW(µ)Vub
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mB F (µ,mb)

· ū(p`)PLv(p⌫)
X
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where the sum runs over the two- and three-particle con-
tributions. After renormalizing the four-fermion opera-
tor in (1), the muon mass and the parameter F in the
MS scheme, using Qu = Qb � Q`, and performing the
integrations over x, we obtain at one-loop order
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The three-particle LCDAs of the B meson have been
studied in [28, 29]. Our function �3g(!,!g) is related
to the functions defined therein by

�3g(!,!g) =
1

!g

h
 A(!,!g)�  V (!,!g)

i
, (22)

where the momentum variables ! and !g refer to the
spectator quark and the gluon, respectively. For small
values of these parameters one finds the asymptotic be-
havior �3g(!,!g) / !!g [29], showing that the convolu-
tion integral in the three-particle term is convergent.

[Cornella, König, MN 2022]



HEP2023 ChileMatthias Neubert  — 

Non-local hadronic matrix elements: 

with:

QED CORRECTIONS IN LEPTONIC B DECAY

5

The above expressions show explicitly the structure-
dependent nature of the QED corrections. The appear-
ance of the two- and three-particle LCDAs, �� and �3g,
highlight the fact that hard-collinear photons exchange
are energetic enough to probe the internal structure of
the B meson. Various phenomenological models for the
LCDAs have been proposed in the literature [26, 28, 29]
and could be used to obtain an estimate of these e↵ects.
In addition, the QbQ` term in M2�part. is a sum of hard
and collinear contributions sensitive to the charges of the
individual quarks. Such a dependence could not appear
in a theory in which the meson is treated as a point-
like particle. Furthermore, it is evident that for any
choice of the renormalization scale µ, the terms involv-
ing the quark charges contain large logarithms of the ra-
tios mb/m` and mb/⇤QCD. The object K✏(m`, µ) in (21)
denotes the collinear corrections, which we refrain from
spelling out explicitly, as they are ill-defined without the
inclusion of real corrections. As mentioned earlier, the
systematic treatment of real photon emissions requires
the construction of a low-energy e↵ective theory below
the scale m`, which in particular contains a boosted ver-
sion of HQET for the muon [38, 39].

Besides its sensitivity to the LCDAs, the decay am-
plitude depends on the hadronic parameter F defined in
(17). In the absence of QED corrections, we have

p
mB fQCD

B =


1� CF

↵s(mb)

2⇡

�
F (mb,mb)

���
↵!0

(23)

up to power corrections of O(⇤QCD/mb). The param-

eter fQCD
B can be computed with high precision using

lattice QCD [40]. While the QED corrections included
in the definition of F are expected to be small, being
governed by ↵, the value of these corrections is dictated
by non-perturbative dynamics and di�cult to estimate.
Due to the presence of the light-like Wilson line and the
✓-function in (16), it is impossible to compute F on a
Euclidean lattice.

To summarize, we have derived the factorization for-
mula for the virtual QED corrections to the exclusive
B�

! `�⌫̄` decay amplitude, focusing on the case ` = µ.
Due to being a subleading-power observable, the deriva-
tion required handling endpoint-divergent convolutions,
which we treated in the refactorization-based subtraction
scheme. While the procedure has been applied elsewhere
before, our result is special in that it applying refactor-
ization in a non-perturbative setting requires a careful
modification of the relevant hadronic matrix elements.
As a consequence, the new object F (µ,⇤) we introduce
and the B-meson LCDAs introduce significant hadronic
uncertainties in the analysis of QED corrections, which
are di�cult to estimate. We stress that our result (21) is
valid only for for ` = µ only. The generalization to other
lepton flavors is non-trivial, since di↵erent scale hierar-
chies require di↵erent e↵ective field-theory constructions.

We leave this interesting issue along with a detailed ex-
position of our derivation for future work.
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ūs�
µPLhv

S
(`)†

n

,

(5)

where
us

denotes
a

soft
quark

field,hv
the

e↵ective
b-

quark
field

in
HQ

ET,and
n̄
µisa

light-likereferencevec-

tor
in

the
direction

of
the

neutrino
m

om
entum

,
which

appearsin
theevaluation

oftheleptonicm
atrix

elem
ent.

The
soft

W
ilson

line
arises

from
the

decoupling
ofsoft

interactionsfrom
them

uon.Itensuresthattheoperator

isgauge
invariantunderboth

Q
CD

and
Q

ED
.Thisnec-

essarily
introducesa

processdependence
in

F
,since

the

W
ilson

lineknowsabouttheexistenceofa
singlecharged

particle
with

charge
Q

`
in

the
finalstate

[4].
W

e
would

then
define

h0
|O

A
|B

�(v)i=
�

i
2

pm
B
F

v
·n̄

,

(6)

where
v

·n̄
=

1
with

ourchoice
ofreference

vectors,and

the
right-hand

side
depends

on
m

B

only
via

the
rela-

tivistic
norm

alization
of

the
m

eson
state.

Com
parison

with
(2)

shows
that

F
⇡

pm
B
fB

up
to

radiative
and

powercorrections.However,in
thepresenceofQ

ED
cor-

rectionsthe
above

definition
isproblem

atic,because
the

operatorO
A

isilldefined.In
fact,itsanom

alousdim
en-

sion
exhibitsasensitivity

toIR
regulators,which

m
ustbe

rem
oved

with
a

subtraction,forexam
ple

by
dividing

the

operatorby
a

vacuum
m

atrix
elem

entofsuitably
defined

W
ilson

lines
[4,13].

Still,there
exists

another
problem

with
the

factorization
form

ula
(4),as

som
e

ofthe
con-

volution
integralssu↵erfrom

endpointdivergences.This

isa
com

m
on

problem
ofNLP

factorization
theorem

s[6–

8,10,30–37].
Neglecting

corrections
of

O
(↵↵s),the

di-

vergent
convolutions

are
those

involving
the

hard
and

jet
functions.

These
divergences

are
troublesom

e,
be-

cause
they

give
rise

to
1/✏polesthatcannotbe

rem
oved

by
renorm

alizing
thehard

and
jetfunctionsindividually,

and
hence

break
the

desired
factorization

ofscales.
In-

terestingly,we
find

thatboth
problem

sare
solved

sim
ul-

taneously:
rem

oving
the

endpoint
divergences

using
the

RBS
schem

eredefinesthesoftoperatorO
A

in
such

a
way

thatitbecom
eswell-defined.

2

photons
with

energies
below

a
resolution

scale
E

s.
The

threshold
E

s
and

a
related

scale
(m

`/m
B
)E

s
com

plete

the
list

ofrelevant
scales.

W
e

have
analyzed

the
factor-

ization
ofthesescalesusing

a
m

ulti-step
m

atching
proce-

dure,in
which

the
e↵ective

weak
Lagrangian

ism
atched

ontotwoversionsofsoft-collineare↵ectivetheory
[14–17],

L
e↵

!

SCET-1
!

SCET-2.
In

a
finalstep,the

SCET-2

operatorsarem
atched

onto
a

low-energy
e↵ectivetheory

consisting
ofproductsofW

ilson
lines,which

are
needed

to
accountforsoftphoton

em
issions.

In
thisLetter,we

discussthe
m

ore
intricate

factoriza-

tion
properties

ofthe
decay

am
plitude

above
the

scale

E
s,which

is
sensitive

to
virtualphoton

exchange
only.

W
e

have
established

the
factorization

theorem

A
virtual

B!
`⌫̄

=

X
j

H
jSjK

j
+

X
i

H
i
⌦

Ji
⌦

Si
⌦

K
i,

(4)

wherethehard
functionsH

iaccountform
atchingcorrec-

tionsatthe
scale

m
b,the

jetfunctionsJi
encode

m
atch-

ingcorrectionsatthescale
pm

b⇤
Q

C
D
,and

thesoftfunc-

tions
are

hadronic
m

atrix
elem

ents
ofthe

B
m

eson
de-

fined
in

heavy-quark
e↵ective

theory
(HQ

ET)
[18–21].

The
collinear

functions
K

i
describe

the
leptonic

m
atrix

elem
ents,encoding

thedependenceon
thescalem

`.The

firstsetofterm
sarisefrom

SCET-1
operatorswith

a
soft

spectator
quark,

whereas
the

second
set

descents
from

operators
in

which
the

spectator
quark

is
described

by

a
hard-collinear

field,
carrying

a
significant

fraction
of

the
charged-lepton

m
om

entum
.The

sym
bol

⌦
indicates

thattheproductofcom
ponentfunctionsm

ustbeunder-

stood
asa

convolution,sincesom
eofthefunctionsshare

com
m

on
m

om
entum

variables,overwhich
onem

ustinte-

grate.In
SCET-2,interactionsbetween

softand
collinear

particlescan
be

been
elim

inated
atthe

Lagrangian
level

using
field

redefinitions
[15,22].

The
rem

nants
ofthese

interactionsappearin
the

form
ofsoftW

ilson
linesS

(f)

n

for
each

charged
ferm

ion
f,where

the
light-like

vector

n
µisaligned

with
the

direction
ofthe

m
uon.

The
appearance

ofa
hard-collinear

scale
between

m
b

and
⇤

Q
C

D
is

an
im

portant
feature

of
the

factorization

form
ula.

Electrom
agnetic

radiation
with

virtuality
q
2⇠

m
b⇤

Q
C

D
em

itted
from

the
m

uon
can

recoilagainst
the

m
eson

and
probeitsinternalstructure.Thise↵ectarises

from
theinteractionsbetween

softand
collinearparticles

[23–25],which
in

SCET-1
are

m
ediated

by
the

exchange

ofa
virtualphoton

between
the

m
uon

and
the

softspec-

tator
quark

in
the

B
m

eson,as
illustrated

in
Figure

1.

Afterm
atching

onto
SCET-2

thisgivesrise
to

non-local

operators,whose
com

ponent
fields

have
light-like

sepa-

ration.Theirm
atrix

elem
entsdefine

the
B

-m
eson

light-

cone
distribution

am
plitudes

(LCDAs)
[26–29].

From
a

system
atic

analysis
ofthe

operators
contributing

to
the

decay
at

O
(⇤

Q
C

D
/m

b),wefind
thattheam

plitudeissen-

sitiveto
a

hadronicparam
eterF

generalizing
theconcept

ofthe
B

-m
eson

decay
constant,as

wellas
to

two-
and

three-particle
LCDAs.

FIG
.

1.
Exam

ples
of

SCET-1
loop

diagram
s

generating

structure-dependent
Q

ED
corrections

at
the

hard-collinear

scale.
The

up-quark
and

m
uon

leaving
the

weak-interaction

operator
carry

fractions
x

and
x̄

=
1�

x
ofthe

large
com

-

ponent
n̄·

p`
of

the
m

uon
m

om
entum

.
The

resulting
con-

tributions
involve

convolutions
with

a
two-particle

(left)
and

three-particle
(right)LCD

A
ofthe

B
m

eson.

A
naturaldefinition

ofthe
param

eter
F

would
be

in

term
softhe

B
-m

eson
m

atrix
elem

entofthe
operator

O
A

=
n̄µ
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

red: Coulomb gluons
blue: gluons emitted along beams 
green: soft gluons between jets

Loss of color coherence from initial-
state Coulomb interactions

▸ Breakdown of factorization? 
▸ Phenomenological consequences?

Need for a complete theory of quantum 
interference effects in jet processes! 

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

[Forshaw, Kyrieleis, Seymour 2006]



HEP2023 ChileMatthias Neubert  — 

THEORY OF JET PROCESSES AT LHC

Perturbative expansion:

gap:

 2Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
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state-of-the-art: 2-loop order
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THEORY OF JET PROCESSES AT LHC

Perturbative expansion including “superleading” logarithms:

� ⇠ �Born ⇥
�
1 + ↵sL+ ↵2

sL
2 + ↵3

sL
3 + ↵4

s L
5 + ↵5

s L
7 + . . .
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:  formally larger than O(1)∼ (αsL)3 (αsL2)n
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gap:

 2Eout < Q0

unrestricted Ein ~ Q

L = ln(Q/Q0) � 1
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Novel factorization theorem 

Renormalization-group equation: 

 new perspective to think about non-global observables⇒
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Jet cross sections at high-energy colliders exhibit intricate patterns of logarithmically enhanced

higher-order corrections. In particular, so-called non-global logarithms emerge from soft radiation

emitted o↵ energetic partons inside jets. While this is a single-logarithmic e↵ect at lepton colliders,

at hadron colliders phase factors in the amplitudes lead to double-logarithmic corrections starting

at four-loop order. This e↵ect was discovered a long time ago, but not much is known about the

higher-order behavior of these terms and their process dependence. We derive, for the first time,

the all-order structure of these “super-leading logarithms” for generic 2 ! l scattering processes at

hadron colliders and resum them in closed form.

If the radiation in a high-energy scattering process is
restricted by experimental cuts, higher-order terms in the
perturbative series are enhanced by large logarithms as-
sociated with soft and collinear emissions. The simple
structure of these emissions often makes it possible to
resum the logarithmic terms to all orders, either analyt-
ically or using parton-shower methods. For non-global
observables, such as exclusive jet cross sections in which
a veto on radiation is imposed only in certain angular
regions, even the leading logarithms have a complicated
structure due to the fact that they are generated by sec-
ondary emissions o↵ the original hard partons [1].

The prototypical non-global observable is the interjet
energy flow, where a veto associated with a low scale Q0

is imposed on radiation in a region away from the hard
jets with energy of the order of the collision energy Q.
Being sensitive only to large-angle soft radiation, one ex-
pects the leading logarithms to this observable to scale as
↵n
s Ln, where L = ln(Q/Q0). This is indeed the case for

e+e� colliders, but Forshaw, Kyrieleis and Seymour [2]
argued that at hadron colliders double logarithms arise
at four-loop order, so that the leading logarithm at this
order is ↵4

sL
5. These so-called super-leading logarithms

(SLLs) are a subtle e↵ect generated by complex phases in
the amplitudes, which spoil the real-virtual cancellation
for collinear emissions o↵ the initial states [3–5]. The
e↵ect is absent in the large-Nc limit and not captured
by any of the existing parton showers, which therefore
do not account for the leading-logarithmic corrections to
non-global observables at hadron colliders.

Even 15 years after this e↵ect was discovered, remark-
ably little is known about it. While the first SLL is known
for arbitrary 2 ! 2 hard processes [6], the second SLL
(⇠ ↵5

sL7) is known for some selected partonic channels
only [7]. The all-order structure of SLLs, their contribu-
tion to other hard processes and their large-order behav-
ior are completely unknown. One reason for this lack of
understanding lies in the fact that one needs to perform
calculations in the full color space, whose dimension is

rapidly growing with the number of emitted partons.
In [8, 9] we have derived factorization theorems for

non-global observables in Soft-Collinear E↵ective The-
ory (SCET) [10–12] and found that non-global logarithms
are governed by a renormalization-group (RG) equation.
Here we apply this method to non-global logarithms at
hadron colliders and derive the all-order structure of the
SLLs ↵3

sL
3 ⇥ ↵n

sL2n for arbitrary 2 ! l processes. We
further show that the e↵ect already arises for l = 0, rel-
evant e.g. to Higgs production with a central jet veto.

As a concrete example, we consider the pp ! 2 jet
cross section with a veto on hard radiation in a rapidity
region �Y in between the two leading jets. This can be
imposed by requiring that any additional jet in the veto
region has a transverse momentum smaller than Q0. At
leading logarithmic accuracy, there is no sensitivity to
how the radiation is vetoed but only to the scale hier-
archy between Q0 and the transverse momentum of the
hard jets, which is of order the partonic center-of-mass
energy, Q =

p
ŝ =

p
x1x2s. For this “gap between jets”

observable, the following factorization formula holds [13]:

�(Q0) =
X

a1,a2=q,q̄,g

Z
dx1dx2

⇥
1X

m=4

⌦
Hm({n}, Q, µ) ⌦ Wm({n}, Q0, x1, x2, µ)

↵
.

(1)

The hard functions Hm describe all possible m-parton
processes a1 + a2 ! a3 + · · · + am and are obtained after
imposing appropriate kinematic constraints, such as cuts
on the transverse momenta and rapidities of the leading
jets. One then integrates over the phase space but for
fixed directions {n} = {n1, . . . , nm} of the m partons,
i.e.

Hm =
1

2ŝ

mY

i=3

Z
dEi E

d�3
i
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�2!M (Q,Q0) =
X

a,b=q,q̄,g

Z
dx1dx2

1X

m=2+M
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low scale

operator in color space and in the 
infinite space of parton multiplicities

1 Introduction
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Thomas has shown that the fundamental color structures we need to analyze are

K2!M

m,n
=

⌦
H2!M ⌦̂�C . . . ⌦̂�C

| {z }
(n�m) times

�I
⌦̂�C . . . ⌦̂�C

| {z }
m times

�I
⌦̂�

↵
, (5)

where M � 0 is the number of final-state partons at Born level. We consider a generic

2 ! M hard-scattering process described by the hard function H2!M . The insertions of color

operators should be read from left to right. The relevant anomalous dimensions are given by

�C
=

X

i=1,2

⇥
4Ci 1� 4Ti,L � Ti,R �(nk � ni)

⇤
,

�I
= �8i⇡ (T1,L · T2,L � T1,R · T2,R) ,

� = 2

X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij
� 4

X

(ij)

Ti,L · Tj,R W
k0

ij
✓in(nk0) .

(6)

The labels i = 1, 2 refer to the initial-state partons, while the label k0 refers to the parton

emitted in the last step of the iteration. The additional p  n collinear gluons, which can

be emitted from the n insertions of �C
, are labeled by indices k1, . . . , kp. The symbol (ij) on

the sums in the expression for � runs over all (unordered) pairs of parton indices with i 6= j.
This sum includes both the initial-state and all final-state partons. We use the color-space

formalism, where Ti denotes a color generator acting on particle i. The superscripts L and R
are defined such that

⌦
HTi,L · Tj,R W

↵
⌘

⌦
T

a

i
HT

a

j
W

↵
=

⌦
HT

a

j
W T

a

i

↵
. (7)

The first n symbols ⌦̂ in (35) imply integrations over the directions nki of these collinear

partons, which simply has the e↵ect of replacing �(nk � ni) ! 1 in the expression for �C
.

The last ⌦̂ means an integration over the direction nM+1, which has the e↵ect of adding an

integral
R

d⌦(nM+1)
4⇡ in front of the second term in �. The trivial consequences of these angular

integrations is a result of the important fact that the relevant soft function in this process,

1

high scale
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All-order summation of large logarithmic corrections, including the 
superleading logarithms!  

 Example: Summation of superleading logarithms for   
scattering in color-singlet channel:
⇒ qq → qq

24

RESUMMATION OF SUPERLEADING LOGARITHMS

w =
3↵s

⇡
L2
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Phenomenological impact in forward gluon-gluon scattering:

 necessary to include eight terms (  10 loops) to obtain reliable results;  
rriiresummation formalism is essential!
⇒ ≤

25

RESUMMATION OF SUPERLEADING LOGARITHMS
Neubert Part B2 EFT4jets

n = 1
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<latexit sha1_base64="wFSYoIcDdkHZhzeRs5txNJIQXkI=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSStNC6EghuXFe0D2lAm00k7dDIJMxOhhH6CGxeKuPWL3Pk3Th+Cih64cDjnXu69J0w5U9pxPqyV1bX1jc3CVnF7Z3dvv3Rw2FJJJgltkoQnshNiRTkTtKmZ5rSTSorjkNN2OL6a+e17KhVLxJ2epDSI8VCwiBGsjXQrLiv9Utmx/XPPq7nIsSvuRc31DHGrvu94yLWdOcqwRKNfeu8NEpLFVGjCsVJd10l1kGOpGeF0WuxliqaYjPGQdg0VOKYqyOenTtGpUQYoSqQpodFc/T6R41ipSRyazhjrkfrtzcS/vG6mIz/ImUgzTQVZLIoyjnSCZn+jAZOUaD4xBBPJzK2IjLDERJt0iiaEr0/R/6Tl2W7F9m6q5Xp1GUcBjuEEzsCFGtThGhrQBAJDeIAneLa49Wi9WK+L1hVrOXMEP2C9fQIv042z</latexit>

↵s = ↵s(Q0)
<latexit sha1_base64="oXCy/s2pYrl0P07uVcI90SnKzIU=">AAAB/3icbZDLSsNAFIZPvNZ6iwpu3AwWoW5KUgu6EQpuXLZgL9CGMJlO26GTSZiZCCV24au4caGIW1/DnW/jtI2grT8MfPznHM6ZP4g5U9pxvqyV1bX1jc3cVn57Z3dv3z44bKookYQ2SMQj2Q6wopwJ2tBMc9qOJcVhwGkrGN1M6617KhWLxJ0ex9QL8UCwPiNYG8u3j7uYx0Psq+sfKNZ959y3C07JmQktg5tBATLVfPuz24tIElKhCcdKdVwn1l6KpWaE00m+mygaYzLCA9oxKHBIlZfO7p+gM+P0UD+S5gmNZu7viRSHSo3DwHSGWA/VYm1q/lfrJLp/5aVMxImmgswX9ROOdISmYaAek5RoPjaAiWTmVkSGWGKiTWR5E4K7+OVlaJZL7kWpXK8UqpUsjhycwCkUwYVLqMIt1KABBB7gCV7g1Xq0nq03633eumJlM0fwR9bHN+gElVM=</latexit>

n = 4
<latexit sha1_base64="PBhPl850ZyqYk02uJ20H/8WPvWI=">AAAB6nicdVDLSgMxFM34rPVVdekmWARXwzwy2o1QcOOyon1AO5RMmmlDM5khyQhl6Ce4caGIW7/InX9j+hBU9MCFwzn3cu89UcaZ0o7zYa2srq1vbJa2yts7u3v7lYPDlkpzSWiTpDyVnQgrypmgTc00p51MUpxEnLaj8dXMb99TqVgq7vQko2GCh4LFjGBtpFtxifqVqmMjDwWeCx3br/kuQoYEAQr8c+jazhxVsESjX3nvDVKSJ1RowrFSXdfJdFhgqRnhdFru5YpmmIzxkHYNFTihKizmp07hqVEGME6lKaHhXP0+UeBEqUkSmc4E65H67c3Ev7xuruNaWDCR5ZoKslgU5xzqFM7+hgMmKdF8YggmkplbIRlhiYk26ZRNCF+fwv9Jy7Nd3/ZuULWOlnGUwDE4AWfABRegDq5BAzQBAUPwAJ7As8WtR+vFel20rljLmSPwA9bbJy38jbI=</latexit>

qq ! qq
<latexit sha1_base64="JplbPc4gmVyO4h31y87UW1nkS3g=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclZla0GXBjcsK9gHtUDJp2oZmMjPJHaEM/Qk3LhRx6++4829M21lo64HA4Zx7yT0niKUw6Lrfzsbm1vbObmGvuH9weHRcOjltmSjVjDdZJCPdCajhUijeRIGSd2LNaRhI3g4md3O//cS1EZF6xGnM/ZCOlBgKRtFKnSTpYUSSpF8quxV3AbJOvJyUIUejX/rqDSKWhlwhk9SYrufG6GdUo2CSz4q91PCYsgkd8a6liobc+Nni3hm5tMqADCNtn0KyUH9vZDQ0ZhoGdjKkODar3lz8z+umOLz1M6HiFLliy4+GqSQ24zw8GQjNGcqpJZRpYW8lbEw1ZWgrKtoSvNXI66RVrXjXlepDrVyv5XUU4Bwu4Ao8uIE63EMDmsBAwjO8wpuTOC/Ou/OxHN1w8p0z+APn8wf8hY/j</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

n = 1
<latexit sha1_base64="7URU+Y7QVV/bumK1jWGUtBvJ3To=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0ia1saDUPDisaKthTaUzXbbLt1swu5GKKE/wYsHRbz6i7z5b9x+CCr6YODx3gwz88KEM6Ud58PKrayurW/kNwtb2zu7e8X9g5aKU0lok8Q8lu0QK8qZoE3NNKftRFIchZzehePLmX93T6VisbjVk4QGER4KNmAEayPdiAu3Vyw5tu9657Uz5NjVStnzHUNc3/FqVeTazhwlWKLRK753+zFJIyo04VipjuskOsiw1IxwOi10U0UTTMZ4SDuGChxRFWTzU6foxCh9NIilKaHRXP0+keFIqUkUms4I65H67c3Ev7xOqgd+kDGRpJoKslg0SDnSMZr9jfpMUqL5xBBMJDO3IjLCEhNt0imYEL4+Rf+TVtl2Pbt8XSnVK8s48nAEx3AKLtSgDlfQgCYQGMIDPMGzxa1H68V6XbTmrOXMIfyA9fYJOfmNug==</latexit>

n = 0
<latexit sha1_base64="m3J1QgIkB+fZXkDtzj3V4KL2K/4=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZlNVmMOQsCLx4jmAUkIs5NJMmR2dpmZFcKST/DiQRGvfpE3/8bJQ1DRgoaiqpvuriAWXBuMP5zMyura+kZ2M7e1vbO7l98/aOgoUZTVaSQi1QqIZoJLVjfcCNaKFSNhIFgzGF/N/OY9U5pH8s5MYtYNyVDyAafEWOlWXuJevoDdkn9WqWCEXd/DfrloyTmu+H4JeS6eowBL1Hr5904/oknIpKGCaN32cGy6KVGGU8GmuU6iWUzomAxZ21JJQqa76fzUKTqxSh8NImVLGjRXv0+kJNR6Ega2MyRmpH97M/Evr52YwUU35TJODJN0sWiQCGQiNPsb9bli1IiJJYQqbm9FdEQUocamk7MhfH2K/ieNouuV3OKNX6j6yziycATHcAoelKEK11CDOlAYwgM8wbMjnEfnxXldtGac5cwh/IDz9gkvl42z</latexit>

n = 2
<latexit sha1_base64="HnrXa+rV/7rk6tqyBMsECbkWJSE=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgadlNNsl6EAJePEY0D0iWMDuZJENmZ5eZWSGEfIIXD4p49Yu8+TdOHoKKFjQUVd10d4UJZ0o7zoeVWVvf2NzKbud2dvf2D/KHR00Vp5LQBol5LNshVpQzQRuaaU7biaQ4CjltheOrud+6p1KxWNzpSUKDCA8FGzCCtZFuxWWxly84tuf7FfcCOXal5Fe8siFu1Sv7LnJtZ4ECrFDv5d+7/ZikERWacKxUx3USHUyx1IxwOst1U0UTTMZ4SDuGChxRFUwXp87QmVH6aBBLU0Kjhfp9YoojpSZRaDojrEfqtzcX//I6qR74wZSJJNVUkOWiQcqRjtH8b9RnkhLNJ4ZgIpm5FZERlphok07OhPD1KfqfNIu2W7KLN16h5q3iyMIJnMI5uFCFGlxDHRpAYAgP8ATPFrcerRfrddmasVYzx/AD1tsnT8qNyQ==</latexit>

n = 3
<latexit sha1_base64="wFSYoIcDdkHZhzeRs5txNJIQXkI=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchSStNC6EghuXFe0D2lAm00k7dDIJMxOhhH6CGxeKuPWL3Pk3Th+Cih64cDjnXu69J0w5U9pxPqyV1bX1jc3CVnF7Z3dvv3Rw2FJJJgltkoQnshNiRTkTtKmZ5rSTSorjkNN2OL6a+e17KhVLxJ2epDSI8VCwiBGsjXQrLiv9Utmx/XPPq7nIsSvuRc31DHGrvu94yLWdOcqwRKNfeu8NEpLFVGjCsVJd10l1kGOpGeF0WuxliqaYjPGQdg0VOKYqyOenTtGpUQYoSqQpodFc/T6R41ipSRyazhjrkfrtzcS/vG6mIz/ImUgzTQVZLIoyjnSCZn+jAZOUaD4xBBPJzK2IjLDERJt0iiaEr0/R/6Tl2W7F9m6q5Xp1GUcBjuEEzsCFGtThGhrQBAJDeIAneLa49Wi9WK+L1hVrOXMEP2C9fQIv042z</latexit>

↵s = ↵s(Q0)
<latexit sha1_base64="oXCy/s2pYrl0P07uVcI90SnKzIU=">AAAB/3icbZDLSsNAFIZPvNZ6iwpu3AwWoW5KUgu6EQpuXLZgL9CGMJlO26GTSZiZCCV24au4caGIW1/DnW/jtI2grT8MfPznHM6ZP4g5U9pxvqyV1bX1jc3cVn57Z3dv3z44bKookYQ2SMQj2Q6wopwJ2tBMc9qOJcVhwGkrGN1M6617KhWLxJ0ex9QL8UCwPiNYG8u3j7uYx0Psq+sfKNZ959y3C07JmQktg5tBATLVfPuz24tIElKhCcdKdVwn1l6KpWaE00m+mygaYzLCA9oxKHBIlZfO7p+gM+P0UD+S5gmNZu7viRSHSo3DwHSGWA/VYm1q/lfrJLp/5aVMxImmgswX9ROOdISmYaAek5RoPjaAiWTmVkSGWGKiTWR5E4K7+OVlaJZL7kWpXK8UqpUsjhycwCkUwYVLqMIt1KABBB7gCV7g1Xq0nq03633eumJlM0fwR9bHN+gElVM=</latexit>

n = 4
<latexit sha1_base64="PBhPl850ZyqYk02uJ20H/8WPvWI=">AAAB6nicdVDLSgMxFM34rPVVdekmWARXwzwy2o1QcOOyon1AO5RMmmlDM5khyQhl6Ce4caGIW7/InX9j+hBU9MCFwzn3cu89UcaZ0o7zYa2srq1vbJa2yts7u3v7lYPDlkpzSWiTpDyVnQgrypmgTc00p51MUpxEnLaj8dXMb99TqVgq7vQko2GCh4LFjGBtpFtxifqVqmMjDwWeCx3br/kuQoYEAQr8c+jazhxVsESjX3nvDVKSJ1RowrFSXdfJdFhgqRnhdFru5YpmmIzxkHYNFTihKizmp07hqVEGME6lKaHhXP0+UeBEqUkSmc4E65H67c3Ev7xuruNaWDCR5ZoKslgU5xzqFM7+hgMmKdF8YggmkplbIRlhiYk26ZRNCF+fwv9Jy7Nd3/ZuULWOlnGUwDE4AWfABRegDq5BAzQBAUPwAJ7As8WtR+vFel20rljLmSPwA9bbJy38jbI=</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

gg ! gg
<latexit sha1_base64="VCGhFBjjw9cS6CcNy/HmcYsLpos=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqszUgi4LblxWsA9oh5JJb6ehmcyYZIQy9CfcuFDErb/jzr8xbWehrQcCh3PuJfecIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9FQ8hFn1FipG4Z9E5MwHJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJD7FkqaYTazxb3zsiFVYZkFCv7pCEL9fdGRiOtp1FgJyNqxnrVm4v/eb3UjG78jMskNSjZ8qNRKojNOA9PhlwhM2JqCWWK21sJG1NFmbEVlWwJ3mrkddKuVb2rau2+XmnU8zqKcAbncAkeXEMD7qAJLWAg4Ble4c15dF6cd+djOVpw8p1T+APn8we/WY+7</latexit>

n = 5
<latexit sha1_base64="vpDiL7BK9UpSaHPT/y390kyePks=">AAAB6nicdVBNS8NAEJ3Ur1q/qh69LBbBU0iafuhBKHjxWNHWQhvKZrtpl242YXcjlNKf4MWDIl79Rd78N27TCir6YODx3gwz84KEM6Ud58PKrayurW/kNwtb2zu7e8X9g7aKU0loi8Q8lp0AK8qZoC3NNKedRFIcBZzeBePLuX93T6VisbjVk4T6ER4KFjKCtZFuxEW1Xyw5dq3u1CoecmyvVvcy4rrn9XIVubaToQRLNPvF994gJmlEhSYcK9V1nUT7Uyw1I5zOCr1U0QSTMR7SrqECR1T50+zUGToxygCFsTQlNMrU7xNTHCk1iQLTGWE9Ur+9ufiX1011eOZPmUhSTQVZLApTjnSM5n+jAZOUaD4xBBPJzK2IjLDERJt0CiaEr0/R/6Rdtl3PLl9XSo3KMo48HMExnIILdWjAFTShBQSG8ABP8Gxx69F6sV4XrTlrOXMIP2C9fQI7b427</latexit>

Figure 3: Individual contributions of the terms of order ↵
n+3
s L

2n+3 to the series of SLLs in (22), in units of
the Born cross section (corresponding to the lowest order), for forward qq ! qq scattering (left) and gg ! gg

scattering (right) at partonic center-of-mass energy of 1TeV and a rapidity gap �Y = 2 between the jets. We
use ↵s = ↵s(Q0) for the QCD coupling.

where w = Nc↵s
4⇡ L

2 encodes the double-logarithmic dependence, and w⇡ = Nc↵s
4⇡ (2⇡)2 is a “⇡

2-

enhanced” term containing the two Coulomb phases. For
p

ŝ = 1 TeV and Q0 = 25 GeV, and setting
↵s = ↵s(Q0), both w ⇡ 1.9 and w⇡ ⇡ 1.4 are of O(1), and w⇡w 2F2

�
1, 1; 2,

5
2 ; �w

�
⇡ 1.9. Therefore,

the numerical e↵ect of the SLLs is of the same order as a logarithmically enhanced, 1/Nc-suppressed
one-loop contribution to the cross section. In the asymptotic limit, one finds
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Q
2

Q
2
0
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The left panel of Figure 3 illustrates the behavior of the first few terms in the series of SLLs for
the case of qq ! qq scattering in the color-octet channel, which is more relevant because in QCD the
lowest-order diagram for quark-quark scattering involves a t-channel gluon exchange. The size of the
corrections is of comparable magnitude with the singlet case. The colored curves show the individual
contributions of the terms of order ↵

n+3
s L

2n+3 to the series in (22), in units of the Born cross section,
for the case of forward scattering at

p
ŝ = 1TeV and a rapidity gap �Y = 2 between the jets. The

shown contributions correspond to logarithmically enhanced e↵ects arising at 3-loop to 7-loop order
in perturbation theory. We use ↵s = ↵s(Q0) for the QCD coupling, as done in [24] (see the comments
below). Note the alternating behavior of the series, which according to (22) is a general feature of the
series of SLLs. It is only because of this property that the sum of all contributions (n = 0, 1, . . . , 1)
adds up to a moderate correction to the cross section, which varies between 17% and 9% for Q0

between 20 and 35 GeV. The largest contribution comes from the term with n = 0, which is not a SLL
in the strict sense of the word, as this e↵ect scales like ↵

3
sL

3 (=mL)2. Nevertheless, this contribution
has the same physical origin and is not captured by conventional parton showers (see e.g. [63]), and
it is important to include it for consistency.

I. Resummation of SLLs for arbitrary jet processes, including subleading e↵ects

Quark-initiated processes are relatively simple, because in the fundamental representation of SU(Nc)
arbitrary products of color generators can be expressed as linear combinations of the unit matrix and
the generators themselves:

{T
a

i ,T
b

i } =
1

Nc

�ab 1 + �i dabc T
c

i , (27)

where �i = ±1 was defined after (23). It is of paramount importance for many important LHC
processes to generalize the approach to processes containing gluons in the initial state. This necessarily
leads to a vastly more complicated color algebra, because in the adjoint representation of SU(Nc)
symmetrized products of color generators cannot be simplified in a straightforward way. It is not at
all obvious that a closed expression for the traces Crn can be found in this case, but my calculations
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qq ! qq
<latexit sha1_base64="JplbPc4gmVyO4h31y87UW1nkS3g=">AAAB73icbVDLSgMxFL3js9ZX1aWbYBFclZla0GXBjcsK9gHtUDJp2oZmMjPJHaEM/Qk3LhRx6++4829M21lo64HA4Zx7yT0niKUw6Lrfzsbm1vbObmGvuH9weHRcOjltmSjVjDdZJCPdCajhUijeRIGSd2LNaRhI3g4md3O//cS1EZF6xGnM/ZCOlBgKRtFKnSTpYUSSpF8quxV3AbJOvJyUIUejX/rqDSKWhlwhk9SYrufG6GdUo2CSz4q91PCYsgkd8a6liobc+Nni3hm5tMqADCNtn0KyUH9vZDQ0ZhoGdjKkODar3lz8z+umOLz1M6HiFLliy4+GqSQ24zw8GQjNGcqpJZRpYW8lbEw1ZWgrKtoSvNXI66RVrXjXlepDrVyv5XUU4Bwu4Ao8uIE63EMDmsBAwjO8wpuTOC/Ou/OxHN1w8p0z+APn8wf8hY/j</latexit>
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ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

p

ŝ = 1TeV , �Y = 2
<latexit sha1_base64="ZPnjZDIPYTpsCethNbR0UlR9q9Y=">AAACFnicbVDLSgNBEJz1GdfXqkcvg0HwEMNuDOglENCDxwgmKtkQZicdMzj7cKZXDEvyE178FS8eFPEq3vwbJzEHXwUNRVU33V1BIoVG1/2wpqZnZufmcwv24tLyyqqztt7Qcao41HksY3UeMA1SRFBHgRLOEwUsDCScBVeHI//sBpQWcXSK/QRaIbuMRFdwhkZqO7u+vlaY+T2GVA8qnl/wEW4xO4XGgPqFgj0c2v4RSGT0olJqO3m36I5B/xJvQvJkglrbefc7MU9DiJBLpnXTcxNsZUyh4BIGtp9qSBi/YpfQNDRiIehWNn5rQLeN0qHdWJmKkI7V7xMZC7Xuh4HpDBn29G9vJP7nNVPsHrQyESUpQsS/FnVTSTGmo4xoRyjgKPuGMK6EuZXyHlOMo0nSNiF4v1/+SxqlordXLJ2U89XyJI4c2SRbZId4ZJ9UyTGpkTrh5I48kCfybN1bj9aL9frVOmVNZjbID1hvn+p8nd0=</latexit>

gg ! gg
<latexit sha1_base64="VCGhFBjjw9cS6CcNy/HmcYsLpos=">AAAB73icbVDLSgMxFL1TX7W+qi7dBIvgqszUgi4LblxWsA9oh5JJb6ehmcyYZIQy9CfcuFDErb/jzr8xbWehrQcCh3PuJfecIBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9FQ8hFn1FipG4Z9E5MwHJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJD7FkqaYTazxb3zsiFVYZkFCv7pCEL9fdGRiOtp1FgJyNqxnrVm4v/eb3UjG78jMskNSjZ8qNRKojNOA9PhlwhM2JqCWWK21sJG1NFmbEVlWwJ3mrkddKuVb2rau2+XmnU8zqKcAbncAkeXEMD7qAJLWAg4Ble4c15dF6cd+djOVpw8p1T+APn8we/WY+7</latexit>
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Figure 4: Resummed contributions of SLLs in forward qq ! qq (left) and gg ! gg (right) scattering for three
di↵erent scale choices for the QCD coupling ↵s.

the scale integrals, it is possible to account for other higher-order contributions by using the known
expressions for the two-loop cusp anomalous dimension and �-function. Further contributions arising
at order ↵

n+3
s L

2n+2 involve color traces analogous to those in (20), in which one includes one less
insertion of �c but a second insertion of �. I expect that it will be possible to evaluate these traces
in closed form. If this is not the case, one can truncate the sum over n in (22) at a finite order and
perform the relevant color traces using the ColorMath tool [76].

The SLLs arise from the color traces (20) with two insertions of the Glauber operator V
G. Since

for realistic choices of the parameters Q and Q0 the quantities w = Nc↵s
4⇡ L

2 and w⇡ = Nc↵s
4⇡ (2⇡)2 are

of similar magnitude, it is natural to ask how important the contributions from color traces involving
four, six or more Glauber insertions are. These traces have the structure

Cr1...r2kn =
⌦
H2+nJ (�c)r1 V G (�c)r2 V G

. . . (�c)r2k V G � ⌦ 1
↵
, (30)

where
P2k

i=1 ri = n, and they contribute at order ↵
n+2k+1
s L

2n+2k+1(2⇡)2k / ↵s w
n+k

w
k
⇡ in perturbation

theory. The SLLs are recovered in the case where k = 1. Including also the terms with k > 1 generates
a Glauber series of subleading logarithmic e↵ects. I believe it should be possible to calculate some of
these higher-order e↵ects analytically by generalizing the methods developed in [24] (milestone I.3).

As a result of these improvements, I expect to obtain all-order predictions for the contributions of
the SLLs to arbitrary LHC jet cross sections with vastly improved perturbative stability (compared
with the bands shown in Figure 4). Since there is no double counting between these e↵ects and any
state-of-the-art perturbative calculations of jet rates, even those improved using parton showers, the
e↵ects of the SLLs can be taken into account consistently by means of a multiplicative correction
factor to the di↵erential cross section, i.e.

d�(pp ! X+jets)
��
fixed order+PS

!

✓
1 +

d�SLL

d�Born

◆
d�(pp ! X+jets)

���
fixed order+PS

. (31)

This correction must be applied to the di↵erential cross sections, because in general the SLLs will be
sensitive to the kinematic dependence of the Born cross section (milestone I.4). Our estimates show
that the corrections from SLLs can be sizable (see Figure 4). Their e↵ects are not included in existing
calculations of jet cross sections, and the possibility of their existence is not reflected in the error
estimates for these calculations.

II. Systematic study of single-logarithmic corrections (including NGLs)

The factorization formula (10) provides a complete EFT description of non-global hadron-collider
observables, in which all logarithmically enhanced e↵ects can be calculated in a systematic way. Once
the SLLs have been calculated for in the way described above, one must still account for the remaining
single-logarithmic corrections. They start at one-loop order and are described by color traces with
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EXPLORING UNCHARTERED TERRITORY
Important open questions 

▸ Do the strong cancellations persist when subleading terms are 
included? How large is the remaining scale ambiguity? 
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▸ Can factorization violations be 
understood in a quantitative way? Can  
a more general notion of factorization 
be established?
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2a. State-of-the-art and objectives

With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.

p

p

Figure 1: Diagrammatic representation of
two Glauber-gluon exchanges (red) between the
initial-state partons in a proton-proton collision.
Collinear gluons moving along the beam directions
are drawn in blue, soft gluons emitted into the gap
are shown in green.

One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
calculation of all LHC cross sections. The physics that
gives rise to the SLLs therefore leads to a breaking of

1

red: Coulomb gluons
blue: gluons along beams 
green: soft gluons between jets
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▸ What are the implications for LHC 
phenomenology? Benchmark processes: 

, , 
, , …

pp → 2 jets pp → H/V + jets
pp → jet + ET pp → new particles/
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REACHING THE NEXT LEVEL OF PRECISION
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With the discovery of the Higgs boson in 2012, the Large Hadron Collider (LHC) at CERN has
revealed the mechanism underlying electroweak symmetry breaking, a key feature of the Standard
Model (SM) of elementary-particle physics. At the same time, the LHC should guide us to resolve
some of the pressing questions left unanswered by the SM. The existence of dark matter and the
abundance of matter over antimatter in the universe are among the phenomena that can only be
explained postulating the existence of “new physics” in the form of new particles and interactions.
In April 2022, the LHC has continued its high-luminosity run, 12 years after the first protons were
collided. In the absence of any direct discoveries of new physics, and in light of some intriguing indirect
hints for the existence of heavy new particles from precision measurements of the anomalous magnetic
moment of the muon [1] and some rare decay processes of B mesons [2], the question poses itself:
Which strategy should one take to fully exploit the discovery potential of the high-luminosity LHC?
I argue in this proposal that precision is the key! Indirect signals of new physics might be hiding
“right under our noses”, but we are limited in our ability to discover them due to present theoretical
uncertainties. In searches for new phenomena, the SM background processes must be controlled with
highest possible accuracy. Thus, we need to significantly improve our ability to calculate the cross
sections for important LHC processes, both in the SM and in extensions featuring new particles.

Scattering processes in which jets – highly collimated sets of energetic particles – are produced
are the most important class of observables studied in high-energy processes, because they closely
mirror the underlying hard-scattering event. They are thus well suited to study short-distance
physics and play an important role in the search for new phenomena. However, the rates for jet
production at hadron colliders are also among the most complicated observables to calculate the-
oretically. Traditionally, cross sections for hadron-collider processes are calculated using pertur-
bative expansions in powers of the strong coupling ↵s along with QCD factorization theorems ,
which relate the hadronic cross sections to partonic cross sections convoluted with parton distri-
bution functions. There has been impressive recent progress on the front of fixed-order perturbative
calculations, where an increasing number of inclusive observables have been computed at next-to-
next-to-next-to-leading order (NNNLO) of perturbation theory [3–16]. For exclusive (or non-global)
observables such as jet cross sections, in which a veto is imposed on radiation in a region away
from the jets, the state-of-the-art is NNLO, see e.g. [17]. Despite these advances, for non-global
observables we are still lacking an understanding of even the leading logarithmically enhanced cor-
rections in higher orders of perturbation theory. Starting from four-loop order, double-logarithmic
corrections arise – the super-leading logarithms (SLLs) [18] – whose structure is still largely unknown.
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One might think that these e↵ects are numerically
very small, because they only arise in higher orders,
but I argue that they can naturally be of the same or-
der as a one-loop correction. It is then imperative to
study these e↵ects in detail and add the corresponding
corrections to existing fixed-order calculations. The
SLLs are caused by a subtle quantum e↵ect: the ex-
change of two Coulomb gluons (or Glauber gluons) be-
tween the two initial-state partons in the scattering
process, see Figure 1. This leads to a breakdown of
color coherence, the fact the sum of soft-gluon emis-
sion o↵ two collinear partons has the same e↵ect as
a single soft emission o↵ the parent parton. Color
coherence, however, is the basis for proofs of QCD
factorization theorems, which underly the theoretical
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