REEEN ADVAMCES IN ET FOR COL LIDER \& FAVOR PHYSICS

MATHHAS NEUBERT
MAINZ INSTHUTE FOR THEORETICAL PHYSICS (MITP) JOHANNES GUTENBERG UNIVERSITY. MAINZ GERMANY

HEP2023, VALPARAISO, CHILE, 9-13 JANUARY 2023

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

STANDARD MODEL TESTS AND NEW PHYSICS SEARCHES

symmetrymagazine.org

Photo by CERN

OUTLINE

, Factorization at next-to-leading power

- systematic method for dealing with endpoint-divergent convolution integrals
- applications to Higgs production in gluon-gluon fusion and rare exclusive B decays
Z.L. Liu, MN: JHEP 04 (2020) 033; Z.L. Liu, B. Mecaj, MN, X. Wang: JHEP 01 (2021) 077;
Z.L. Liu, MN, M. Schnubel, X. Wang: arXiv:2212.10477; C. Cornella, M. König, MN: arXiv:2212.14430
- Theory of non-global observables at hadron collider
- first resummation of "super-leading logarithms"
- estimates for $g g \rightarrow g g$ scattering and outlook
T. Becher, MN, D. Y. Shao: Phys. Rev. Lett. 127 (2021) 212002 \& to appear (with M. Stillger)

SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES

Factorization of different scales is a fundamental concept of physics:

- LHC cross sections: $\sigma(p p \rightarrow X)=\sigma_{\text {parton }}(a b \rightarrow X) \otimes$ PDFs
- Basis for separation of perturbative from nonperturbative effects
- Systematic resummation of large logarithmic corrections

Soft-collinear effective theory (SCET) provides a framework for studying scale separation and resummation for processes involving light energetic particles, using powerful EFT tools
[Bauer et al. 2000-2001; Beneke et al. 2002]

SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES

Conventional EFTs provide a series expansion in inverse powers of a large scale Q:

$$
\mathcal{L}_{\mathrm{eff}}=\sum_{i} C_{i}(Q, \mu) O_{i}(\mu)+\frac{1}{Q} \sum_{j} C_{j}^{(1)}(Q, \mu) O_{j}^{(1)}(\mu)+\frac{1}{Q^{2}} \sum_{k} C_{k}^{(2)}(Q, \mu) O_{k}^{(2)}(\mu)+\ldots
$$

- Examples: $\mathscr{H}_{\text {eff }}^{\text {weak }}, \chi \mathrm{PT}$, HOET, SMEFT, ...
- Extension to higher orders is straightforward, even if often tedious

SCET is more complicated in many regards:

- Operators contain non-local products of fields, separated by lightlike distances
- EFT fields are split up in momentum modes (soft, collinear, hard, ...)

SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES

Prototypical SCET factorization theorem

- Examples: threshold resummation and p_{T} resummation for DrellYan and Higgs production, jet vetos, event shapes, jet substructure, non-global and super-leading logarithms, ...
- Products/convolutions of component functions, which live at a single characteristic scale

SCALE FACTORIZATION IN HIGH-ENERGY PROCESSES

Extension to next-to-leading power?

$$
\sigma \sim H \int J \otimes J \otimes S
$$

- Generically, find endpoint-divergent convolution integrals
- Upset scale separation and break factorization
- Failure of dimensional regularization and MS scheme
\Rightarrow questions usefulness of the entire SCET framework!

A hard problem! Several groups worldwide have been working on this for years...
[Beneke et al. ; Moult et al.; Stewart et al.; MN et al.; Bell et al.] (2018-2022)

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Leading momentum regions, each corresponding to a SCET operator:

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Leading momentum regions, each corresponding to a SCET operator:

[Liu, MN, Schnubel, Wang 2022]

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Bare factorization theorem

$$
\begin{aligned}
F_{g g}^{(0)}= & H_{1}^{(0)} S_{1}^{(0)}+2 \int_{0}^{1} \frac{d z}{z} H_{2}^{(0)}(z) S_{2}^{(0)}(z) \\
& +H_{3}^{(0)} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} \int_{0}^{\infty} \frac{d \ell_{-}}{\ell_{-}} J^{(0)}\left(-M_{h} \ell_{+}\right) J^{(0)}\left(M_{h} \ell_{-}\right) S_{3}^{(0)}\left(\ell_{+} \ell_{-}\right)
\end{aligned}
$$

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Bare factorization theorem

$$
\begin{aligned}
F_{g g}^{(0)}= & H_{1}^{(0)} S_{1}^{(0)}+2 \int_{0}^{1} \frac{d z}{z} H_{2}^{(0)}(z) S_{2}^{(0)}(z) \\
& +H_{3}^{(0)} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} \int_{0}^{\infty} \frac{d \ell_{-}}{\ell_{-}} J^{(0)}\left(-M_{h} \ell_{+}\right) J^{(0)}\left(M_{h} \ell_{-}\right) S_{3}^{(0)}\left(\ell_{+} \ell_{-}\right)
\end{aligned}
$$

- Convolution integrals in the second and third term are endpoint divergent for $z \rightarrow 0$ and $\ell_{ \pm} \rightarrow \infty$

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Refactorization-based subtraction (RBS) scheme

$$
\begin{aligned}
F_{g g}^{(0)}= & H_{1}^{(0)} S_{1}^{(0)}+2 \int_{0}^{1} \frac{d z}{z} H_{2}^{(0)}(z) S_{2}^{(0)}(z) \\
& +H_{3}^{(0)} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} \int_{0}^{\infty} \frac{d \ell_{-}}{\ell_{-}} J^{(0)}\left(-M_{h} \ell_{+}\right) J^{(0)}\left(M_{h} \ell_{-}\right) S_{3}^{(0)}\left(\ell_{+} \ell_{-}\right)
\end{aligned}
$$

- Exact D-dimensional refactorization conditions ensure that the integrands of the second and third terms are identical in the singular regions (to all orders of perturbation theory):

$$
\begin{aligned}
& {\left[\left[H_{2}^{(0)}(z)\right]\right]=-H_{3}^{(0)} J^{(0)}(\underbrace{z M_{h}^{2}}_{M_{h} \ell_{-}})} \\
& {\left[\left[S_{2}^{(0)}(z)\right]\right]=-\frac{1}{2} \int_{0}^{\infty} \frac{d \ell_{+}}{\ell_{+}} J^{(0)}\left(-M_{h} \ell_{+}\right) S_{3}^{(0)}(\overbrace{z M_{h} \ell_{+}}^{\ell})}
\end{aligned}
$$

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Renormalized factorization theorem in the RBS scheme
[Liu, MN, Schnubel, Wang 2022]

$$
\begin{aligned}
F_{g g}(\mu)= & {\left[H_{1}(\mu)-\Delta H_{1}(\mu)\right] S_{1}(\mu)+2 \int_{0}^{1} \frac{d z}{z}\left(H_{2}(z, \mu) S_{2}(z, \mu)-\left[\left[H_{2}(z, \mu)\right]\right]\left[\left[S_{2}(z, \mu)\right]\right]\right) } \\
& +\lim _{\sigma \rightarrow-1} H_{3}(\mu) \int_{0}^{\sigma M_{h}} \frac{d \ell_{+}}{\ell_{+}} \int_{0}^{M_{h}} \frac{d \ell_{-}}{\ell_{-}} J\left(-M_{h} \ell_{+}, \mu\right) J\left(M_{h} \ell_{-}, \mu\right) S_{3}\left(\ell_{+} \ell_{-}, \mu\right)
\end{aligned}
$$

- Provides basis for systematic resummations of large double (and single) logarithms $\sim \alpha_{s}^{n} \ln ^{2 n-k}\left(-M_{h}^{2} / m_{b}^{2}\right)$ with $k \geq 0$
- Have succeeded to sum the towers of these logarithms for $k=0,1,2$ (NLL' approximation); result expressed in terms of hypergeometric functions ${ }_{2} F_{2}$ and Dawson integral $D(z)$

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

HIGGS PRODUCTION VIA BOTTOM-QUARK LOOPS

Form factor $F_{g g}\left(q^{2}\right)$ in the time-like region:

\Rightarrow significant reduction of the perturbative uncertainty of light-quark indices contributions to the gluon-fusion cross section!

QED CORRECTIONS IN LEPTONIC B DECAY

Decay $B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}$ is another example of a powersuppressed process, because the amplitude is chirally suppressed by m_{ℓ} / m_{b}; rate ratios for $\ell=e, \mu, \tau$ can provides tests of lepton universality
effective 4-fermion interaction
from W-boson exchange

- Effective weak Hamiltonian at $\mu \sim m_{b}$:

$$
\mathcal{L}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b}\left(\bar{u} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right)
$$

- In QCD, decay amplitude is given in terms of $V_{u b}$ times the B-meson decay constant $f_{B^{\prime}}$ defined by:

$$
\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} b\left|B^{-}(v)\right\rangle=i m_{B} f_{B} v^{\mu}
$$

QED CORRECTIONS IN LEPTONIC B DECAY

- Problem becomes interesting when OED corrections are included, because virtual photons can resolve the inner structure
 of the B meson [Cornella, König, MN 2022; also: Beneke, Bobeth, Szafron 2018]
- Quark current $\bar{u} \gamma^{\mu} P_{L} b$ is not gauge invariant under QED; to fix this, one must add a Wilson line accounting for soft photon interactions with the charged lepton: $\bar{u} \gamma^{\mu} P_{L} b S_{n}^{(\ell) \dagger}$
[Beneke, Bobeth, Szafron 2019]
- Two problems:
- operator is ill-defined (IR sensitive anomalous dimension)
[Beneke, Böer, Toelstede, Vos 2020]

QED CORRECTIONS IN LEPTONIC B DECAY

SCET factorization theorem

$$
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{i} \otimes S_{i} \otimes K_{i}
$$

- Both problems have a common solution! [Cornella, König, MN 2022]

QED CORRECTIONS IN LEPTONIC B DECAY

Two most important contributions:

$$
\left.\begin{array}{c}
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
\cdot\left[H_{A}\left(m_{b}\right) S_{A}+\int d \omega \int_{0}^{1} d x \operatorname{H}_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) S_{B}(\omega)\right] \\
\sim x^{-n \epsilon} \\
\sim x^{-1-n \epsilon}
\end{array}\right]
$$

where (with $\bar{n} \| p_{\nu}$):

$$
\begin{aligned}
O_{A} & =\bar{n}_{\mu} \bar{u}_{s} \gamma^{\mu} P_{L} b_{v} S_{n}^{(\ell) \dagger} \\
O_{B}(\omega) & =\int \frac{d \omega}{2 \pi} e^{i \omega t} \bar{u}_{s}(t n)[t n, 0] \hbar P_{L} b_{v}(0) S_{n}^{(\ell) \dagger}(0)
\end{aligned}
$$

QED CORRECTIONS IN LEPTONIC B DECAY

Subtraction of endpoint divergences in the RBS scheme

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \ell \bar{\nu}}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}} V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& \cdot\left[\left(H_{A}\left(m_{b}\right)-\Delta H_{A}\left(m_{b}\right)\right) S_{A}^{\left(m_{b}\right)}\right. \\
& \left.\quad+\int d \omega \int_{0}^{1} d x\left[H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right)-\llbracket H_{B}\left(m_{b}, x\right) \rrbracket \llbracket J_{B}\left(m_{b} \omega, x\right) \rrbracket\right] S_{B}(\omega)\right]
\end{aligned}
$$

with the redefined soft operator:
[Cornella, König, MN 2022]

$$
O_{A}^{\left(m_{b}\right)}=\bar{u}_{s} \not \hbar P_{L} b_{v} \theta\left(m_{b}-i \bar{n} \cdot D_{s}\right) S_{n}^{(\ell) \dagger}
$$

- cuts away high photon momenta
- well-defined anomalous dimension!

with $\bar{n} \cdot k \leq m_{b}$

QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

$$
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=i \sqrt{2} G_{F} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} \sqrt{m_{B}} F\left(\mu, m_{b}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \sum_{j} \mathcal{M}_{j}(\mu)
$$

with:

$$
\begin{aligned}
& \mathcal{M}_{2-\text { part. }}(\mu)=1+\frac{\alpha}{4 \pi}\left\{Q_{b}^{2}\left[-\frac{3}{2} \ln \frac{\mu^{2}}{m_{b}^{2}}-2\right]+Q_{\ell}\left(Q_{\ell}-Q_{b}\right) \int_{0}^{\infty} d \omega \phi_{-}(\omega)\left[2 \ln \frac{\mu^{2}}{m_{b} \omega}+\frac{\pi^{2}}{3}+3\right]\right. \\
&\left.+Q_{b} Q_{\ell}\left[2 \ln \frac{\mu^{2}}{m_{b}^{2}}-3 \ln \frac{\mu^{2}}{m_{\ell}^{2}}-1\right]+Q_{\ell}^{2} K_{\epsilon}\left(m_{\ell}, \mu\right)\right\}+\frac{C_{F} \alpha_{s}(\mu)}{4 \pi}\left[-\frac{3}{2} \ln \frac{\mu^{2}}{m_{b}^{2}}-2\right] \\
& \mathcal{M}_{3-\text { part. }}(\mu)=-\frac{\alpha}{\pi} Q_{\ell}\left(Q_{\ell}-Q_{b}\right) \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \omega_{g} \phi_{3 g}\left(\omega, \omega_{g}\right)\left[\frac{1}{\omega_{g}} \ln \left(1+\frac{\omega_{g}}{\omega}\right)-\frac{1}{\omega+\omega_{g}}\right]
\end{aligned}
$$

[Cornella, König, MN 2022]
\Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

QED CORRECTIONS IN LEPTONIC B DECAY

Non-local hadronic matrix elements:

$$
\langle 0| O_{A}^{\left(m_{b}\right)}(\mu)\left|B^{-}(v)\right\rangle=-\frac{i \sqrt{m_{B}}}{2} F\left(\mu, m_{b}\right)
$$

$\phi_{ \pm}(\omega) \quad$ [Grozin, MN 1996]

$$
\phi_{3 g}\left(\omega, \omega_{g}\right)
$$

with:

$$
\sqrt{m_{B}} f_{B}^{\mathrm{QCD}}=\left.\left[1-C_{F} \frac{\alpha_{s}\left(m_{b}\right)}{2 \pi}\right] F\left(m_{b}, m_{b}\right)\right|_{\alpha \rightarrow 0}
$$

THEORY OF JET PROCESSES AT LHC

CERN Document Server, ATLAS-PHOTO-2018-022-6

THEORY OF JET PROCESSES AT LHC

[Forshaw, Kyrieleis, Seymour 2006]
Loss of color coherence from initialstate Coulomb interactions

- Breakdown of factorization?
- Phenomenological consequences?
red: Coulomb gluons
blue: gluons emitted along beams
green: soft gluons between jets

Need for a complete theory of quantum interference effects in jet processes!

THEORY OF JET PROCESSES AT LHC

Perturbative expansion:

$$
\sigma \sim \sigma_{\mathrm{Born}} \times\left\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}\right\}
$$

state-of-the-art: 2-loop order

THEORY OF JET PROCESSES AT LHC

Perturbative expansion including "superleading" logarithms:

$$
\begin{gathered}
\sigma \sim \sigma_{\text {Born }} \times\left\{1+\alpha_{s} L+\alpha_{s}^{2} L^{2}+\alpha_{s}^{3} L^{3}+\alpha_{s}^{4} L^{5}+\alpha_{s}^{5} L^{7}+\ldots\right\} \\
\text { state-of-the-art: 2-loop order } \quad \sim\left(\alpha_{s} L\right)^{3}\left(\alpha_{s} L^{2}\right)^{n}: \text { formally larger than O(1) } \\
\text { [Forshaw, Kyrieleis, Seymour 2006] }
\end{gathered}
$$

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

THEORY OF JET PROCESSES AT LHC

Novel factorization theorem

$$
\sigma_{2 \rightarrow M}\left(Q, Q_{0}\right)=\sum_{a, b=q, \bar{q}, g} \int d x_{1} d x_{2} \sum_{m=2+M}^{\infty}\left\langle\mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \otimes \mathcal{W}_{m}^{a b}\left(\{\underline{n}\}, Q_{0}, x_{1}, x_{2}, \mu\right)\right\rangle
$$

Renormalization-group equation:

$$
\mu \frac{d}{d \mu} \mathcal{H}_{l}^{a b}(\{\underline{n}\}, Q, \mu)=-\sum_{m \leq l} \mathcal{H}_{m}^{a b}(\{\underline{n}\}, Q, \mu) \boldsymbol{\Gamma}_{m l}^{H}(\{\underline{n}\}, Q, \mu)
$$

\Rightarrow new perspective to think about non-global observables

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

RESUMMATION OF SUPERLEADING LOGARITHMS

All-order summation of large logarithmic corrections, including the superleading logarithms!
\Rightarrow Example: Summation of superleading logarithms for $q q \rightarrow q q$
scattering in color-singlet channel:

$$
\begin{gathered}
\sigma_{\text {SLL }}=-\sigma_{\text {Born }} \underbrace{\frac{16 \alpha_{s} L}{81 \pi} \Delta Y\left(3 \alpha_{s} L\right)^{2}{ }_{2} F_{2}\left(1,1 ; 2, \frac{5}{2} ;-w\right) \sim\left(\alpha_{s} L\right)^{3} \sum_{n \geq 0} c_{n}\left(\alpha_{s} L^{2}\right)^{n}}_{\text {1-loop factor }} \\
w=\frac{3 \alpha_{s}}{\pi} L^{2}
\end{gathered}
$$

[Becher, MN, Shao 2021]

RECENT ADVANCES IN SCET FOR COLLIDER AND FLAVOR PHYSICS

RESUMMATION OF SUPERLEADING LOGARITHMS

Phenomenological impact in forward gluon-gluon scattering:

\Rightarrow necessary to include eight terms (≤ 10 loops) to obtain reliable results; resummation formalism is essential!

EXPLORING UNCHARTERED TERRITORY

Important open questions

- Do the strong cancellations persist when subleading terms are included? How large is the remaining scale ambiguity?
- Can factorization violations be understood in a quantitative way? Can a more general notion of factorization be established?
- What are the implications for LHC phenomenology? Benchmark processes: $p p \rightarrow 2$ jets, $p p \rightarrow H / V+$ jets, $p p \rightarrow$ jet $+\mathbb{H}_{T}, p p \rightarrow$ new particles,..

red: Coulomb gluons
blue: gluons along beams green: soft gluons between jets

REACHING THE NEXT LEVEL OF PRECISION

