On the possibility of measuring the polarization of the ${ }^{3} \mathrm{He}$ beam at EIC by the HJET

A.A. Poblaguev

Brookhaven National Laboratory

Brookhaven
National Laboratory

Hadronic polarimetry at the EIC

High energy, 40-275 GeV polarized proton and helion (${ }^{3} \mathrm{He}{ }^{\uparrow}$) beams are planned at the future Electron Ion Collider.
The requirement for the EIC beam polarimetry:

$$
\sigma_{P}^{\text {syst }} / P \lesssim 1 \%
$$

Compared to RHIC, there are new challenges for the hadronic beam polarimetry at EIC

- Much shorter, 10 ns bunch spacing (107 ns at RHIC)
- ${ }^{3} \mathrm{He} \uparrow$ beam
- A complete analysis of the beam polarization includes measurement of the polarization profile, polarization decay time, ...
- The main goal of this presentation is to discuss the RHIC Hydrogen Jet Target (HJET) feasibility to measure the ${ }^{3} \mathrm{He} \uparrow$ beam averaged absolute polarization at EIC.

The Atomic Polarized Hydrogen Gas Jet Target (HJET)

- Vertically polarized gas jet target, $\boldsymbol{P}_{\text {jet }} \approx 96 \pm 0.1 \%$
- Vertical polarizations of the blue and yellow RHIC proton beams are concurrently and continuously measured by detecting the recoil protons in the left-right symmetric silicon detectors with vertically oriented strips.
- The measured kinetic energy T_{R}, time of flight ToF $=t_{R}-t_{0}$, and z_{R} coordinate in detectors allows us to isolate the elastic events.

Elastic event isolation:
ToF $=\sqrt{\frac{m_{p}}{2 T_{R}}} \frac{L}{c} \quad$ (the time of flight corresponds to the proton's kinetic energy)
$\frac{z_{\mathrm{R}}-z_{\mathrm{jet}}}{L}=\sqrt{\frac{T_{R}}{2 m_{p}} \frac{E_{\mathrm{beam}}+m_{p}}{E_{\text {beam }}-m_{p}+T_{R}}} \approx \sqrt{\frac{T_{R}}{2 m_{p}}} \times\left(1+\frac{m_{p}}{E_{\text {beam }}}\right) \quad$ (for elastic scattering)

- The HJET geometry predetermine measurements in the CNI region
$0.0013<-t<0.018 \mathrm{GeV}^{2}$
$\left(0.6<T_{R}<10 \mathrm{MeV}\right)$

$$
t=-2 m_{p} T_{R}!
$$

Polarization measurement of proton beams at HJET

The beam ($\uparrow \downarrow$) and target (\pm) single spin asymmetries are concurrently measured using $0.5<T_{R}<10 \mathrm{MeV}$ recoil protons.

Typical results for an 8 hour store in RHIC Run 17 (255 GeV)

$$
\begin{aligned}
& P_{\text {beam }} \approx\left(56 \pm 2.0_{\text {stat }} \pm 0.3_{\text {syst }}\right) \% \\
& \sigma_{P}^{\text {syst }} / \boldsymbol{P}_{\text {beam }} \lesssim 0.5 \%
\end{aligned}
$$

Since the background is well controlled, the analyzing power can be precisely measured

$$
A_{N}(t)=a_{\mathrm{jet}}\left(T_{R}\right) / P_{\mathrm{jet}} \quad\left[T_{R}=-t / 2 m_{p}\right]
$$

Elastic single spin proton-proton analyzing power $A_{N}(s, t)$

For CNI elastic scattering, analyzing power is defined by the interference of the spin-flip $\phi_{5}(s, t)$ and non-flip $\phi_{+}(s, t)$ helicity amplitudes:
$A_{N}(s, t) \approx-2 \operatorname{Im}\left(\phi_{5}^{*} \phi_{+}\right) /\left|\phi_{+}\right|^{2}$

$$
\phi=\phi^{\mathrm{h}}+\phi^{\mathrm{em}} e^{i \delta_{C}}
$$

$$
\begin{aligned}
\boldsymbol{A}_{\boldsymbol{N}}(\boldsymbol{t})= & \frac{2 \operatorname{Im}\left[\phi_{5}^{\mathrm{em}} \phi_{+}^{\mathrm{h} *}+\phi_{5}^{h} \phi_{+}^{e m *}+\phi_{5}^{h} \phi_{+}^{h *}\right]}{\left|\phi_{+}^{\mathrm{h}}+\phi_{+}^{\mathrm{em}} e^{i \delta_{C}}\right|^{2}} \\
& =\frac{\sqrt{-t}}{m_{p}} \frac{\kappa_{p} t_{c} / t-2 I_{5} t_{c} / t-2 R_{5}}{\left(t_{c} / t\right)^{2}-2\left(\rho+\delta_{C}\right) t_{c} / t+1}
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{p}=\mu_{p}-1=1.793 \\
& t_{c}=-8 \pi \alpha / \sigma_{\mathrm{tot}}=-1.86 \times 10^{-3} \mathrm{GeV}^{2} \\
& \rho=-0.079 \\
& \delta_{C}=0.024+\alpha \ln t_{c} / t
\end{aligned}
$$

$$
\text { (for } 100 \mathrm{GeV} \text { beam) }
$$

The primary goal of the experimental study of the elastic $p p$ analyzing power in the CNI region is an evaluation of the hadronic spin-flip amplitude, parameterized by

$$
r_{5}=\frac{m_{p} \phi_{5}^{\mathrm{had}}(s, t)}{\sqrt{-t} \operatorname{Im} \phi_{+}^{\mathrm{had}}(s, t)}=R_{5}+i I_{5}, \quad\left|r_{5}\right| \sim 2 \%
$$

Measurements of $A_{\mathrm{N}}(t)$ in Runs 15 (100 GeV) \& 17 (255 GeV)

- The filled areas specify 1σ experimental uncertainties, stat.+syst., scaled by x50.
- Hadronic spin-flip amplitude parameter

$$
r_{5}=\frac{m_{p} \phi_{5}^{\mathrm{had}}(s, t)}{\sqrt{-t} \operatorname{Im} \phi_{+}^{\mathrm{had}}(s, t)}=R_{5}+i I_{5}
$$

The measured hadronic spin flip amplitudes:

$$
\begin{array}{ll}
\sqrt{s}=13.76 \mathrm{GeV} & R_{5}=\left(-12.5 \pm 0.8_{\text {stat }} \pm 1.5_{\text {syst }}\right) \times 10^{-3} \\
& I_{5}=\left(-5.3 \pm 2.9_{\text {stat }} \pm 4.7_{\text {syst }}\right) \times 10^{-3} \\
\sqrt{s}=21.92 \mathrm{GeV} & R_{5}=\left(-3.9 \pm 0.5_{\text {stat }} \pm 0.8_{\text {syst }}\right) \times 10^{-3} \\
& I_{5}=\left(19.4 \pm 2.5_{\text {stat }} \pm 2.5_{\text {syst }}\right) \times 10^{-3}
\end{array}
$$

The corrections due to absorption and the updated value of the proton charge radius $r_{p}=0.841 \mathrm{fm}$ were applied

$$
R_{5}=R_{5}^{\text {PRL }}+\left(3.1_{\text {abs. }}+0.8_{r_{p}}\right) \times 10^{-3}
$$

Double spin-flip analyzing power $A_{\mathrm{NN}}(s, t)$

A.A. Poblaguev et al., Phys. Rev. Lett. 123, 162001 (2019)

$$
\frac{d^{2} \sigma}{d t d \varphi} \propto\left[1+A_{\mathrm{N}}(\boldsymbol{t}) \sin \varphi\left(\boldsymbol{P}_{\boldsymbol{b}}+\boldsymbol{P}_{\boldsymbol{j}}\right)+\boldsymbol{A}_{\mathrm{NN}}(\boldsymbol{t}) \sin ^{2} \varphi \boldsymbol{P}_{\boldsymbol{b}} \boldsymbol{P}_{\boldsymbol{j}}\right] \quad(\text { at HJET, } \sin \varphi= \pm 1)
$$

Double spin-flip amplitude parameter

$$
r_{2}=\frac{\phi_{2}^{\text {had }}(s, t)}{2 \operatorname{Im} \phi_{+}^{\text {had }}(s, t)}=R_{2}+i I_{2}
$$

$$
\begin{array}{ll}
\sqrt{s}=13.76 \mathrm{GeV} & R_{2}=\left(-3.65 \pm 0.28_{\text {stat }}\right) \times 10^{-3} \\
& I_{2}=\left(-0.10 \pm 0.12_{\text {stat }}\right) \times 10^{-3} \\
\sqrt{s}=21.92 \mathrm{GeV} & R_{2}=\left(-2.15 \pm 0.20_{\text {stat }}\right) \times 10^{-3} \\
& I_{2}=\left(-0.35 \pm 0.07_{\text {stat }}\right) \times 10^{-3}
\end{array}
$$

How to measure the EIC ${ }^{3} \mathrm{He}$ beam polarization with HJET

AP, Phys. Rev. 106, 065202 (2022)

$$
\begin{aligned}
& P_{\text {meas }}^{h}\left(T_{R}\right)=P_{\text {jet }} \frac{a_{\text {beam }}\left(T_{R}\right)}{a_{\mathrm{jet}}\left(T_{R}\right)} \times \frac{A_{\mathrm{N}}^{p^{\uparrow} h}\left(T_{R}\right)}{A_{\mathrm{N}}^{h^{\uparrow} p}\left(T_{R}\right)} \\
& =\frac{\boldsymbol{a}_{\mathrm{beam}}}{\boldsymbol{a}_{\mathrm{jet}}} \boldsymbol{P}_{\mathrm{jet}} \times \frac{\boldsymbol{\kappa}_{\boldsymbol{p}}-2 I_{5}^{p h}-2 R_{5}^{p h} \boldsymbol{T}_{\boldsymbol{R}} / \boldsymbol{T}_{\boldsymbol{c}}+\omega^{p h}\left(\boldsymbol{r}_{5}, \boldsymbol{T}_{\boldsymbol{R}}\right)}{\boldsymbol{\kappa}_{\boldsymbol{h}}-2 I_{5}^{h p}-2 R_{5}^{h p} \boldsymbol{T}_{\boldsymbol{R}} / \boldsymbol{T}_{\boldsymbol{c}}+\omega^{h p}\left(\boldsymbol{r}_{5}, \boldsymbol{T}_{\boldsymbol{R}}\right)} \\
& \approx P_{\text {beam }}^{h} \times\left(1+\xi_{0}+\xi_{1} T_{R} / T_{c}\right) \\
& \kappa_{p}=\mu_{p}-1=1.793 \\
& \kappa_{h}=\mu_{h} / Z_{h}-m_{p} / m_{h}=-1.398 \\
& T_{c} \approx 0.7 \mathrm{MeV} \\
& \omega\left(r_{5}, T_{R}\right) \text { are the breakup, } \\
& h \rightarrow p d \text { and } h \rightarrow p p n \text {, corrections. }
\end{aligned}
$$

The systematic uncertainties in value of $P_{\text {beam }}^{h}$ are defined by ξ_{0},
$\xi_{0}=\mathbf{2} \delta I_{5}^{h p} / \boldsymbol{\kappa}_{\boldsymbol{h}}-\mathbf{2} \delta I_{5}^{p h} / \boldsymbol{\kappa}_{\boldsymbol{p}}+\delta \omega, \quad$ One should expect $\delta \omega=0$ (the breakup corrections gone if
ξ_{1} - can be determined in the measurements $\left.\quad t \rightarrow 0\right)$. However, extrapolation of measured $P_{\text {meas }}^{h}\left(\boldsymbol{T}_{R}\right)$ to
$\boldsymbol{P}_{\text {meas }}^{h}(\mathbf{0})$ may result in non-zero value of $\delta \omega$.

- $r_{5}^{p h}$ and $r_{5}^{p h}$ can be related to the proton-proton r_{5} (predetermined for the same beam energy per nucleon). 10-20\% theoretical accuracy of such calculation is sufficient to satisfy EIC requirement $\boldsymbol{\sigma}_{P}^{\text {syst }} / \boldsymbol{P} \leq \mathbf{1} \%$.
- Since no breakup is possible for $t=0$, the breakup corrections are expected to be small in the HJET measurements

Hadronic spin-flip amplitude in $\boldsymbol{p}^{\uparrow} \mathbf{A}$ scattering

According to B. Kopeliovich and T. Trueman, Phys. Rev. D 64, 034004 (2001), for high energy elastic scattering to a very good approximation

$$
\phi_{\mathrm{sf}}^{p A}(t) / \phi_{\mathrm{nf}}^{p A}(t)=\phi_{\mathrm{sf}}^{p p}(t) / \phi_{\mathrm{nf}}^{p p}(t)
$$

$$
r_{5}^{p A}=r_{5}^{p p} \frac{i+\rho^{p A}}{i+\rho^{p p}} \approx r_{5}^{p p}
$$

The result can be easily reproduced in the Glauber theory. For example, elastic proton-deuteron ($p d$) scattering can be approximated by the proton-nucleon collisions ($p N$):

$$
F_{i i}(\boldsymbol{q})=S\left(\frac{\boldsymbol{q}}{2}\right) f_{n}(\boldsymbol{q})+S\left(\frac{\boldsymbol{q}}{2}\right) f_{p}(\boldsymbol{q})+\frac{i}{2 \pi k} \int S\left(\boldsymbol{q}^{\prime}\right) f_{n}\left(\frac{\boldsymbol{q}}{2}+\boldsymbol{q}^{\prime}\right) f_{p}\left(\frac{\boldsymbol{q}}{2}-\boldsymbol{q}^{\prime}\right) d^{2} \boldsymbol{q}^{\prime}
$$

Since the $p N$ spin-flip amplitude is small (at HJET),

$$
f_{N}^{\mathrm{sf}}(\boldsymbol{q})=\frac{q n}{m_{p}} \frac{r_{5}}{i+\rho} f_{N}(\boldsymbol{q}), \quad\left|f_{N}^{\mathrm{sf}}(\boldsymbol{q}) / f_{N}(\boldsymbol{q})\right| \leq 0.003,
$$

to calculate the spin-flip $p d$ amplitude, one should replace in the right-hand side

$$
f_{n} \rightarrow f_{n}^{\text {sf }}, \quad f_{p} \rightarrow f_{p}^{\text {sf }}, \quad \text { and } \quad f_{n} f_{p} \rightarrow f_{n}^{\text {sf }} f_{p}+f_{n} f_{p}^{\text {sf }}
$$

$$
F_{i i}^{\mathrm{sf}}(\boldsymbol{q}) \equiv \frac{\boldsymbol{q} \boldsymbol{n}}{m_{p}} \frac{r_{5}^{p A}}{i+\rho^{p A}} F_{i i}(\boldsymbol{q})=\frac{\boldsymbol{q} \boldsymbol{n}}{m_{p}} \frac{r_{5}}{i+\rho} F_{i i}(\boldsymbol{q})
$$

More general consideration of the elastic $\boldsymbol{p}^{\uparrow} A$ scattering

The hadronic amplitude for a proton-nucleus elastic and/or breakup scattering can be approximated (R.J Glauber and Matthiae, Nucl. Phys. B21 (1970) 135) by

$$
F_{f i}\left(\boldsymbol{q}_{T}\right)=\frac{i k}{2 \pi} \int e^{i b \boldsymbol{q}_{T}} \Psi_{f}^{*}\left(\left\{\boldsymbol{r}_{j}\right\}\right) \Gamma\left(\boldsymbol{b}, \boldsymbol{s}_{1} \ldots \boldsymbol{s}_{A}\right) \Psi_{i}\left(\left\{\boldsymbol{r}_{j}\right\}\right) \prod_{j=1}^{A} d^{3} r_{j} d^{2} b
$$

and can be calculated if initial $\Psi_{i}\left(\left\{\boldsymbol{r}_{j}\right\}\right)$ and final $\Psi_{f}\left(\left\{\boldsymbol{r}_{j}\right\}\right)$ state wave functions are known.

In Glauber theory, elastic $p A$ amplitude can be expressed via the proton nucleon ones

$$
\begin{aligned}
F_{i i}(q) & =\sum_{a}\left\{S_{a} f_{a}\right\}+\sum_{a, b}\left\{S_{a b} f_{a} f_{b}\right\}+\sum_{a, b, c}\left\{S_{a b c} f_{a} f_{b} f_{c}\right\}+\ldots \\
\sum_{a, b, c}\left\{S_{a b c} f_{a} f_{b} f_{c}\right\} & =\int S_{a b c}\left(\boldsymbol{q}_{a}^{\prime}, \boldsymbol{q}_{b}^{\prime}, \boldsymbol{q}_{c}^{\prime}\right) f_{a}\left(\boldsymbol{q}_{a}^{\prime}\right) f_{b}\left(\boldsymbol{q}_{b}^{\prime}\right) f_{c}\left(\boldsymbol{q}_{c}^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}_{a}^{\prime}-\boldsymbol{q}_{b}^{\prime}-\boldsymbol{q}_{c}^{\prime}\right) d^{2} \boldsymbol{q}_{a}^{\prime} d^{2} \boldsymbol{q}_{b}^{\prime} d^{2} \boldsymbol{q}_{c}^{\prime}
\end{aligned}
$$

No knowledge of form factors $S_{a}, S_{a b}, \ldots$ is needed to calculate the elastic spin flip amplitude

$$
F_{i i}^{\mathrm{sf}}(\boldsymbol{q})=\frac{\boldsymbol{q} \boldsymbol{n}}{m_{p}} \frac{r_{5}}{i+\rho} F_{i i}(q) \Rightarrow r_{5}^{p A}=r_{5} \frac{\boldsymbol{i}+\boldsymbol{\rho}^{p A}}{\boldsymbol{i}+\boldsymbol{\rho}^{p \boldsymbol{p}}}
$$

Elastic $\mathbf{p}+\boldsymbol{h}^{\uparrow} \rightarrow \boldsymbol{p}+\boldsymbol{h}$ hadronic spin-flip amplitude

- The spin-flip proton-nucleon amplitude depends on the nucleon's polarization

$$
p N^{\uparrow} \Rightarrow f^{s f}(q)=\frac{q n}{m_{p}} \frac{r_{5} P_{N}}{i+\rho} f(q)
$$

- If all nucleons in a nuclei have the same spatial distributions, i.e., if $S_{a, b, \ldots}=S_{b, a, \ldots}=S_{b, c, \ldots}$, then for unpolarized proton scattering off the polarized nuclei

$$
r_{5}^{A p}=r_{5} \frac{i+\rho^{p A}}{i+\rho^{p p}} \frac{\sum P_{i}}{A}
$$

where P_{i} are nucleon polarizations in the nuclei.

Since in a fully polarized helion in the ground S state, $P_{n}=1$ and $P_{p}=0$,

$$
r_{5}^{h p}=r_{5} / 3
$$

Considering also S^{\prime} - and D-wave components, it was found $P_{n} \approx 0.88, P_{p} \approx-0.02$
[J.L. Friar et al., Phys. Rev. C 42, 2310 (1990)]

$$
r_{5}^{h p}=(0.27 \pm 0.06) r_{5}
$$

$$
\begin{aligned}
& P_{\text {meas }}^{h}\left(T_{R}\right)=\frac{a_{\text {beam }}}{a_{\text {jet }}} P_{\text {jet }} \times \frac{\kappa_{p}-2 I_{5}-2 R_{5} T_{R} / T_{c}}{\kappa_{h}-0.54 I_{5}-0.54 R_{5} T_{R} / T_{c}} \\
& \approx P_{\text {beam }}^{h} \times\left(1+\xi_{0}+\xi_{1} T_{R} / T_{c}\right) \\
& r_{5}=R_{5}+i I_{5} \text {, is the proton-proton } \\
& \text { hadronic spin-flip amplitude } \\
& \text { parameter } \\
& \begin{array}{r}
\frac{\boldsymbol{\delta}_{\text {syst }}^{r_{5}} \boldsymbol{P}_{\text {beam }}^{h}}{\boldsymbol{P}_{\text {beam }}^{h}}=\xi_{0}=\underbrace{\frac{\mathbf{2}}{\boldsymbol{\kappa}_{\boldsymbol{p}}} \delta I_{5}^{p h} \oplus \frac{-\mathbf{2}}{\boldsymbol{\kappa}_{\boldsymbol{h}}} \delta I_{5}^{h p}}_{\lesssim \mathbf{0 . 2} \%} \oplus \underbrace{\left(\frac{\mathbf{2}}{\boldsymbol{\kappa}_{\boldsymbol{p}}}-\frac{\mathbf{0 . 5 4}}{\boldsymbol{\kappa}_{\boldsymbol{h}}}\right) \delta I_{5}}_{\lesssim \mathbf{0 . 5 \%}} \oplus \underbrace{\left(\frac{\mathbf{2}}{\boldsymbol{\kappa}_{\boldsymbol{p}}}-\frac{\mathbf{2}}{\boldsymbol{\kappa}_{\boldsymbol{h}}}\right) \frac{I_{5}^{p n}-I_{5}^{p p}}{\mathbf{3}}}_{\begin{array}{l}
\lesssim 0.2 \%
\end{array}} \lesssim \mathbf{0 . 6 \%}
\end{array} \begin{array}{l}
\text { Mossible difference between } \\
p n \text { and } p p \text { amplitudes }
\end{array}
\end{aligned}
$$

For $100 \mathrm{GeV} /$ nucleon ${ }^{3} \mathrm{He}$ beam, the expectation for the r_{5} related systematic uncertainties in measured polarization is in agreement with the EIC requirement

$\boldsymbol{p}^{\uparrow}+\boldsymbol{A} \rightarrow \boldsymbol{p}+\left(A_{1}+A_{2} \ldots\right)$ hadronic spin-flip amplitude

For a breakup scattering $p^{\uparrow} A \rightarrow p X$ (e.g., $\boldsymbol{p h} \rightarrow \boldsymbol{p} \boldsymbol{p} \boldsymbol{d}$), the amplitude can be a function of $\Delta=M_{X}-M_{A}$ (and other the breakup internal variables).
It may be convenient to define ratio of the breakup and elastic amplitude,

$$
\psi_{f i}(\boldsymbol{q}, \Delta)=F_{f i}(\boldsymbol{q}, \Delta) / F_{i i}(\boldsymbol{q})=\left|\psi_{f i}(\boldsymbol{q}, \Delta)\right| e^{i \varphi_{f i}(\boldsymbol{q}, \Delta)}
$$

and (redefine) the spin-flip parameter \tilde{r}_{5}

$$
F_{f i}^{\mathrm{sf}}(\boldsymbol{q})=\frac{\boldsymbol{q} \boldsymbol{n}}{m_{p}} \frac{\tilde{r}_{5}}{i+\rho} F_{f i}(\boldsymbol{q})
$$

A breakup $p A$ amplitude can be expresses via proton-nucleon amplitudes in the same way as elastic one, but with some different set of formfactors

$$
\begin{gathered}
F_{f i}(q)=\sum_{a}\left\{\tilde{S}_{a} f_{a}\right\}+\sum_{a, b}\left\{\tilde{S}_{a b} f_{a} f_{b}\right\}+\sum_{a, b, c}\left\{\tilde{S}_{a b c} f_{a} f_{b} f_{c}\right\}+\ldots \\
\boldsymbol{p}^{\uparrow} \boldsymbol{A} \rightarrow \boldsymbol{p} \boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}} \ldots \\
\tilde{\boldsymbol{r}}_{5} \boldsymbol{p}^{\uparrow} \boldsymbol{A}=\boldsymbol{r}_{5}
\end{gathered}
$$

Inelastic $p+h^{\uparrow} \rightarrow p+(p+d)_{h}$ hadr. spin-flip amplitude

$$
\tilde{\boldsymbol{r}}_{5}^{h p}=\tilde{\boldsymbol{r}}_{5}^{h \rightarrow p d}=\left(0.27+\delta_{p d}\right) r_{5}
$$

Considering single scattering amplitude with large \boldsymbol{q} (to knock-out the nucleon), one finds that the $h \rightarrow p d$ breakup can be associated with $p p^{\downarrow}$ scattering, that is

$$
\tilde{r}_{5}^{h p \rightarrow p d p}=-r_{5} \Rightarrow \delta_{p d}=-1.27
$$

In the same approach,

$$
\tilde{\boldsymbol{r}}_{5}^{h \rightarrow p p n}=+\boldsymbol{r}_{5}
$$

In the ground S state of a polarized ${ }^{3} \mathrm{He}$, protons p^{\uparrow} and p^{\downarrow} are spin singlet, p^{\uparrow} and n^{\uparrow} bound state may be interpreted as deuteron.

Anticipating that for low \boldsymbol{q} the result may be different,

$$
-1.27<\delta_{p d}<0
$$

will be considered for estimates

Inelastic scattering in HJET

At the HJET, the elastic and inelastic events can be separated by comparing recoil proton energy and z coordinate (i.e. the Si strip location). For $\boldsymbol{A}+\boldsymbol{p} \rightarrow \boldsymbol{X}+\boldsymbol{p}$ scattering:

$$
\frac{z_{R}-z_{\mathrm{jet}}}{L}=\sqrt{\frac{T_{R}}{2 m_{p}}} \times\left[1+\frac{m_{p}}{E_{\text {beam }}}+\frac{m_{p} \Delta}{T_{R} E_{\text {beam }}}\right]
$$

$\Delta=\boldsymbol{M}_{\boldsymbol{X}}-\boldsymbol{m}_{\boldsymbol{p}}>m_{\pi}$ $\boldsymbol{E}_{\text {beam }}$ is the beam energy per nucleon

$$
\begin{array}{ll}
\text { At HJET, } & Z_{R} \text { is discriminated by the Si strip width, } 3.75 \mathrm{~mm} \\
& \text { the dependence is smeared due to } \sigma_{\text {jet }} \approx 2.5 \mathrm{~mm}
\end{array}
$$

- At HJET, the inelastic events can be separated from the elastic one's if $\boldsymbol{v} \gtrsim 0.9$.
- For proton beam, the detected inelastic rate is very small if $\boldsymbol{v} \gtrsim \mathbf{1 . 4}$ $\left(E_{p}<100 \mathrm{GeV}\right)$
- The inelastic events are not detected at HJET if $\boldsymbol{v} \gtrsim 2.5\left(E_{p}<55 \mathrm{GeV}\right)$.

$\boldsymbol{p}_{\text {beam }}^{\uparrow}+\boldsymbol{p}_{\text {jet }}^{\uparrow} \rightarrow \boldsymbol{X}_{\text {beam }}+\boldsymbol{p}_{\text {jet }}$

255 GeV

For the inelastic scattering $\Delta>\boldsymbol{m}_{\boldsymbol{\pi}}$

100 GeV

Proton-nucleus Scattering at HJET

In the Au beam measurements at HJET ($\Delta \gtrsim 4 \mathrm{MeV}, \quad 3.8<E_{\text {beam }}<100 \mathrm{GeV} / \mathrm{n}$), no evidence of the breakup fraction in the elastic data was found.

$$
\begin{aligned}
& \left|\frac{d \sigma_{\mathrm{brk}}^{p \mathrm{Au}}\left(T_{R}, \Delta\right)}{d \sigma_{\mathrm{el}}^{p \mathrm{Au}}\left(T_{R}\right)}\right|_{\mathbf{1 . 7}<\boldsymbol{T}_{\boldsymbol{R}}<\mathbf{4 . 4} \mathbf{~ M e V}} \\
& 3.85 \mathrm{GeV} / \mathrm{n}: \\
& 26.5 \mathrm{GeV} / \mathrm{n}: \\
& 0.20 \pm 0.12 \% \\
& -0.08 \pm 0.06 \%
\end{aligned} \quad[3.6<\Delta<8.5 \mathrm{MeV}] \quad[20<\Delta<60 \mathrm{MeV}] .
$$

A model used to search for the $d \rightarrow$ pn breakup events at HJET

For incoherent proton-nucleus scattering, a simple kinematical consideration gives:
$\Delta=\left(\mathbf{1}-\frac{m_{p}}{M_{A}}\right) \boldsymbol{T}_{\boldsymbol{R}}+\boldsymbol{p}_{x} \sqrt{\frac{2 T_{R}}{m_{p}}}$, where p_{x} is the target nucleon transverse momentum Assuming the following p_{x} distribution, $f_{\mathrm{BW}}\left(p_{x}, \sigma_{p}\right)=\frac{\pi^{-1} \sqrt{2} \sigma_{p}}{p_{x}^{2}+2 \sigma_{p}^{2}}, \int f_{\mathrm{BW}}\left(p_{x}, \sigma_{p}\right) d p_{x}=1$, one finds for a two-body breakup (for given T_{R})

$$
d N / d \Delta \propto f_{\mathrm{BW}}\left(\Delta-\Delta_{0}, \sigma_{\Delta}\right) \Phi_{2}(\Delta), \quad \Delta_{0}=\left(1-m_{p} / M_{A}\right) T_{R}, \sigma_{\Delta}=\sigma_{p} \sqrt{2 T_{R} / m_{p}}
$$

$\frac{d^{2} \sigma_{h \rightarrow p d}\left(T_{R}, \Delta\right)}{\boldsymbol{d} \sigma_{h \rightarrow h}\left(T_{R}\right) d \Delta}=\left|\psi\left(T_{R}, \Delta\right)\right|^{2} \omega\left(T_{R}, \Delta\right)=|\psi|^{2} f_{B W}\left(\Delta-\Delta_{0}, \sigma_{\Delta}\right) \frac{\sqrt{2 m_{p} m_{d}}}{4 \pi m_{h}} \sqrt{\frac{\Delta-\Delta_{\mathrm{thr}}^{h}}{m_{h}}}$

- The breakup fraction $\omega\left(T_{R}, \Delta\right)$ dependence is pre-defined by the nucleon momentum distribution in a nuclei.
- In the HJET measurements, $\Delta<50 \mathrm{MeV}$ is small.
- The breakup to elastic amplitude ratio, $\boldsymbol{\psi}\left(\boldsymbol{T}_{R}, \Delta\right)$, is about independent of the $\boldsymbol{T}_{\boldsymbol{R}}$ and Δ.
- The $h \rightarrow p d$ breakup is strongly suppressed by the phase space factor $\omega\left(\boldsymbol{T}_{R}, \Delta\right) \propto \sqrt{\Delta-\Delta_{\mathrm{thr}}^{h}}$.
- For the $h \rightarrow p p n$ breakup the suppression is much stronger $\boldsymbol{\omega}\left(\boldsymbol{T}_{R}, \Delta\right) \propto\left(\Delta-\Delta_{\mathrm{thr}}^{h}\right)^{2}$.
- The electromagnetic $p h$ amplitudes are nearly the same for elastic and breakup scattering.

Deuteron beam measurements at HJET

AP, Phys. Rev. 106, 065203 (2022)

- In RHIC Run 16, deuteron-gold scattering was studied at beam energies $10,20,31$, and $100 \mathrm{GeV} / \mathrm{n}$.
- In the HJET analysis, the breakup events $d \rightarrow p+n$ $\left(\Delta_{\mathrm{thr}}^{d}=2.2 \mathrm{MeV}\right)$ were isolated for 10,20 , and 31 GeV data.
- The breakup was evaluated for $2.8<T_{R}<4.2 \mathrm{MeV}$
- In the data fit, the $d \rightarrow p d$ breakup fraction $\omega\left(T_{R}, \Delta\right)$ was parameterized,

$$
|\psi| \approx 5.6, \quad \sigma_{p} \approx 35 \mathrm{MeV}
$$

- For $T_{R} \sim 3.5 \mathrm{MeV}$, the breakup fraction was evaluated to be

$$
\begin{aligned}
\frac{d \sigma_{d \rightarrow p n}\left(T_{R}\right)}{d \sigma_{d \rightarrow d}\left(T_{R}\right)} & =\omega_{d \rightarrow p n}\left(T_{R}\right) \\
& =|\psi|^{2} \int d \Delta \omega_{d \rightarrow p n}\left(T_{R}, \Delta\right) \approx 5.0 \pm 1.4 \%
\end{aligned}
$$

- The result obtained strongly depends on the used parametrization and, thus, a verification is needed.

$d \rightarrow p n$ breakup in the hydrogen bubble chamber

B. S. Aladashvili et al., J. Phys. G 3, 1225 (1977).

- The HJET measurement of the deuteron beam breakup is in reasonable agreement with the bubble chamber measurements
- The model used satisfactory describes the HJET measurements (within the experimental accuracy.
- Only a small fraction, $\sim 1.5 \%$, of $d \rightarrow p n$ breakups can be detected at HJET.

Extrapolation to the ${ }^{3} \mathrm{He}$ beam breakup at HJET

- Using the model parametrization, $|\psi| \approx 5.6, \quad \sigma_{p} \approx 35 \mathrm{MeV}$, evaluated with the deuteron beam, the breakup rate for the $100 \mathrm{GeV} / \mathrm{n}$ helion beam was evaluated.
- For $\mathbf{1}<\boldsymbol{T}_{\boldsymbol{R}}<\mathbf{1 0} \mathbf{~ M e V}$, the following $\boldsymbol{h} \rightarrow \boldsymbol{p d}$ breakup fraction was calculated

$$
\left\langle d \sigma_{h \rightarrow p d} / d \sigma_{\mathrm{el}}\right\rangle=2.4 \pm 0.4 \%
$$

- Considering event selection cuts at HJET, the breakup fraction as a function of T_{R} was found

$$
\begin{aligned}
& \frac{d \sigma_{h \rightarrow p d}\left(T_{R}\right)}{d \sigma_{h \rightarrow h}\left(T_{R}\right)}= \omega\left(T_{R}\right) \\
&=|\psi|^{2} \int d \Delta \omega\left(T_{R}, \Delta\right) \\
& \widetilde{\omega}\left(T_{R}\right)=|\psi| \int d \Delta \omega\left(T_{R}, \Delta\right)=\omega\left(T_{R}\right) /|\psi|
\end{aligned}
$$

${ }^{3} \mathrm{He}$ breakup measurements in the hydrogen bubble chamber

V.V. Glagolev et al., C 60, 421 (1993)
$\sigma_{\mathrm{el}} \quad=24.2 \pm 1.0 \mathrm{mb}$
$\sigma_{h \rightarrow p d}=7.29 \pm 0.14 \mathrm{mb}$
$\sigma_{h \rightarrow p p n}=6.90 \pm 0.14 \mathrm{mb}$
J. Stepaniak , Acta Phys. Polon. B 27, 2971 (1996)

The effective cross sections in HJET measurements:

$$
\begin{array}{ll}
\sigma_{\text {elastic }}^{\mathrm{HJET}} \approx 11 \mathrm{mb} & \\
\sigma_{h \rightarrow p p n}^{\mathrm{HJET}}<0.02 \mathrm{mb} & \text { (bubble chamber) } \\
\sigma_{h \rightarrow p d}^{\mathrm{HJET}} \sim 0.15 \mathrm{mb} & \text { (bubble chamber) } \\
\sigma_{h \rightarrow p d}^{\mathrm{HJET}} \approx 0.25 \mathrm{mb} & \text { (deuteron beam in HJET) }
\end{array}
$$

The ${ }^{3} \mathrm{He}$ breakup rates $\omega\left(T_{R}\right)$ and $\widetilde{\omega}\left(T_{R}\right)$ derived from the deuteron beam measurements at HJET can be interpreted as upper limits.

$$
E_{\text {beam }}=4.6 \mathrm{GeV} / \mathrm{n}
$$

The breakup corrections in the ${ }^{3} \mathrm{He}$ beam polarization measurements with HJET

$$
P_{\text {meas }}^{h}\left(T_{R}\right)=\frac{a_{\text {beam }}}{a_{\text {jet }}} P_{\text {jet }} \times \frac{\kappa_{p}-2 I_{5}-2 R_{5} T_{R} / T_{c}}{\kappa_{h}-0.54 I_{5}-0.54 R_{5} T_{R} / T_{c}}
$$

The corrections:

$$
\begin{aligned}
& \kappa \rightarrow \kappa \times\left[1+\widetilde{\omega}\left(T_{R}\right) \cos \varphi\right] \\
& I_{5} \rightarrow I_{5}+\widetilde{\omega}\left(T_{R}\right) \times\left[\tilde{I}_{5} \cos \varphi+\tilde{R}_{5} \sin \varphi\right] \\
& R_{5} \rightarrow R_{5}+\omega\left(T_{R}\right) \times \tilde{R}_{5}
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{\omega}\left(T_{R}\right) & \approx 0.23 \%+0.05 \% T_{R} / T_{c} \\
\omega\left(T_{R}\right) T_{R} / T_{c} & \approx \omega_{0}+\omega_{1} T_{R} / T_{c} \\
& =-6.7 \%+4.5 \% T_{R} / T_{c}
\end{aligned}
$$

$$
\left|\frac{\delta_{\text {byst }}^{\text {brk }} P_{\text {beam }}^{h}}{P_{\text {beam }}^{h}}\right| \lesssim\left|\left(\frac{2\left(0.27+\delta_{p d}\right)}{\kappa_{h}}-\frac{2}{\kappa_{p}}\right) \omega_{0} R_{5}\right| \leq\left|\left(\frac{0.54}{\kappa_{h}}-\frac{2}{\kappa_{p}}\right) \omega_{0} R_{5}\right| \lesssim 0.2 \%
$$

A better result can be obtained in non-linear fit of the measured polarization:

$$
\boldsymbol{P}_{\text {meas }}^{h}\left(\boldsymbol{T}_{R}\right)=\boldsymbol{P}_{\text {beam }}^{h} \times\left[\mathbf{1}+\xi_{1} \boldsymbol{T}_{R} / \boldsymbol{T}_{\boldsymbol{c}}+\xi_{\omega} \omega^{\text {calc }}\left(T_{R}\right) \boldsymbol{T}_{R} / \boldsymbol{T}_{c}\right]
$$

Summary

- Feasibility for precisely measuring the EIC $100 \mathrm{GeV}{ }^{3} \mathrm{He}$ beam polarization with the RHIC Polarized Atomic Hydrogen Gas Jet Target polarimeter was considered.
- Knowledge of the $p^{\uparrow} h$ and $h^{\uparrow} p$ analyzing power ratio is needed for such a measurement.
- Although the ratio is well defined by values of the proton and helion magnetic moments with accuracy of a few percent, the correction due to the protonhelion hadronic spin-flip amplitudes and due to the possible beam ${ }^{3} \mathrm{He}$ breakup should be considered.
- The hadronic spin-flip amplitudes for $p^{\uparrow} h$ and $h^{\uparrow} p$ scattering can be derived, with sufficient accuracy, from proton-proton value of r_{5} measured at HJET.
- The breakup corrections were found to be small and can be neglected in the polarization measurements.
- It was found that the EIC ${ }^{3} \mathrm{He}$ beam polarization can be measured with HJET with low systematic uncertainties satisfying the EIC requirement

$$
\sigma_{P}^{s y s t} / P \leqq 1 \%
$$

