Quarkonium transport in weakly and strongly coupled plasmas

8th International Conference on High Energy Physics in the LHC Era Universidad Técnica Federico Santa María January 12, 2023

Bruno Scheihing (MIT)
with Xiaojun Yao (UW) and Govert Nijs (MIT) based on 2107.03945, 2205.04477, 2302.XXXXX

Quarkonium in HeavyIon Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP (talks by Aichelin, Kabana, Kopeliovich, ...).
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
o as single open heavy flavors, and
- as pairs of heavy flavors that can bind into quarkonia.

Busza, Rajagopal, van der Schee, 1802.04801

Quarkonium in HeavyIon Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP (talks by Aichelin, Kabana, Kopeliovich, ...).
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
o as single open heavy flavors, and
- as pairs of heavy flavors that can bind into quarkonia.

Busza, Rajagopal, van der Schee, 1802.04801

Quarkonium in HeavyIon Collisions

- Heavy quarks and quarkonia are amongst the most informative probes of the QGP (talks by Aichelin, Kabana, Kopeliovich, ...).
- To interpret the full wealth of data, we need a precise theoretical understanding of heavy quarks in a thermal medium,
o as single open heavy flavors, and
- as pairs of heavy flavors that can bind into quarkonia.

Busza, Rajagopal, van der Schee, 1802.04801

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

 M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

At high T, quarkonium "melts" because the medium screens the interactions between heavy quarks (Matsui \& Satz 1986)

$$
Q \bar{Q} \text { melts if } r \sim \frac{1}{M v} \gg \frac{1}{T}
$$

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$Q: c$ or b quark $\bar{Q}: \bar{c}$ or \bar{b} quark

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

$$
M \gg M v \gg M v^{2}
$$

Quarkonium in medium

M : heavy quark mass v : typical relative speed

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }}[& S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Time scales of quarkonia

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$\begin{array}{cc}\text { Interaction with the } \\ \text { environment } & \text { QGP } \\ \text { (the environment) }\end{array}$

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

Interaction with the environment

QGP
(the environment)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }}[& S^{\dagger}\left(i \partial_{0}-H_{S}\right) S+O^{\dagger}\left(i D_{0}-H_{O}\right) O \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Open quantum systems
 "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t) .
$$

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right] .
$$

Open quantum systems "tracing/integrating out" the QGP

- Given an initial density matrix $\rho_{\text {tot }}(t=0)$, quarkonium coupled with the QGP evolves as

$$
\rho_{\mathrm{tot}}(t)=U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)
$$

- We will only be interested in describing the evolution of quarkonium and its final state abundances

$$
\Longrightarrow \rho_{S}(t)=\operatorname{Tr}_{\mathrm{QGP}}\left[U(t) \rho_{\mathrm{tot}}(t=0) U^{\dagger}(t)\right]
$$

- Then, one derives an evolution equation for $\rho_{S}(t)$, assuming that at the initial time we have $\rho_{\mathrm{tot}}(t=0)=\rho_{S}(t=0) \otimes e^{-H_{\mathrm{QGP}} / T} / \mathscr{Z}_{\mathrm{QGP}}$.

Open quantum systems

"tracing/integrating out" the QGP: semi-classic description

How does the QGP enter the dynamics?

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{-}-\right]_{i_{i i} i}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

bound state color singlet

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport
the unbound state carries color charge and interacts with the medium
unbound state: color octet
medium-induced transition
bound state:
color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

the unbound state carries color charge and interacts with the medium
unbound state:
medium-induced transition
bound state:
color singlet

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} F_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

688 688

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2 i} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

unbound state: color octet
the unbound state carries color charge and interacts with the

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

QGP chromoelectric correlators

for quarkonia transport

bound state:

unbound state: color octet
the unbound state carries color charge and interacts with the

$$
\left[g_{E}^{--}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2^{\prime}} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$ transition

medium

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{-}-\right]_{i_{i i} i}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{V}_{2} E_{i_{i}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{V}_{1}\right)^{a}\right\rangle_{T}
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

Why are these correlators interesting?

These determine the dissociation and formation rates of quarkonia (in the quantum optical limit):

$$
\begin{array}{r}
\left.\Gamma^{\mathrm{diss}} \propto \int \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\mathrm{rel}}}\right\rangle\left.\right|^{2}\left[g_{E}^{++}\right]_{i i}^{>}\left(q^{0}=E_{\mathscr{B}}-\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}, \mathbf{q}\right), \\
\left.\Gamma^{\text {form }} \propto \int \frac{\mathrm{d}^{3} \mathbf{p}_{\mathrm{cm}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\mathrm{rel}}}{(2 \pi)^{3}} \frac{\mathrm{~d}^{3} \mathbf{q}}{(2 \pi)^{3}}\left|\left\langle\psi_{\mathscr{B}}\right| \mathbf{r}\right| \Psi_{\mathbf{p}_{\mathrm{rel}}}\right\rangle\left.\right|^{2}\left[g_{E}^{--}\right]_{i i}^{>}\left(q^{0}=\frac{\mathbf{p}_{\mathrm{rel}}^{2}}{M}-E_{\mathscr{B}}, \mathbf{q}\right) \\
\times f_{\mathcal{S}}\left(\mathbf{x}, \mathbf{p}_{\mathrm{cm}}, \mathbf{r}=0, \mathbf{p}_{\mathrm{rel}}, t\right) .
\end{array}
$$

So, let's calculate

Weakly coupled calculation in QCD

The real-time calculation proceeds by evaluating these diagrams (+ some permutations of them) on the Schwinger-Keldysh contour

The spectral function at NLO

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right)
$$

We found

$$
g^{2} \varrho_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}+\frac{\pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

The spectral function at NLO
 and a comparison with its heavy quark counterpart

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right) .
$$

We found

$$
g^{2} \varrho_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}+\frac{\pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

and the heavy quark counterpart is, with the same T-dependent function $F\left(p_{0} / T\right)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
g^{2} \rho_{E}^{\mathrm{HQ}}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}-\frac{2 \pi^{2}}{3}\right) N_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

The spectral function at NLO
 and a comparison with its heavy quark counterpart

It is simplest to write the integrated spectral function:

$$
\varrho_{E}^{++}\left(p_{0}\right)=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{(2 \pi)^{3}} \delta^{a d} \delta_{i j}\left[\rho_{E}^{++}\right]_{j i}^{d a}\left(p_{0}, \mathbf{p}\right) .
$$

We found

$$
g^{2} Q_{E}^{++}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{144}{36}+\frac{\pi^{2}}{3}\right){ }^{2}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

and the heavy quark counterpart is, with the same T-dependent function $F\left(p_{0} / T\right)$,
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
g^{2} \rho_{E}^{\mathrm{HQ}}\left(p_{0}\right)=\frac{g^{2}\left(N_{c}^{2}-1\right) p_{0}^{3}}{(2 \pi)^{3}}\left\{4 \pi^{2}+g^{2}\left[\left(\frac{11}{12} N_{c}-\frac{1}{3} N_{f}\right) \ln \left(\frac{\mu^{2}}{4 p_{0}^{2}}\right)+\left(\frac{149}{36}-\frac{2 \pi^{2}}{3}\right){ }_{c}-\frac{10}{9} N_{f}+F\left(\frac{p_{0}}{T}\right)\right]\right\}
$$

But they look so similar...

Heavy quark and quarkonia correlators

a small, yet consequential difference

The heavy quark diffusion coefficient can be defined from the real-time correlator J. Casalderrey-Solana and D. Teaney, hep-ph/0605199; see also A. M. Eller, J. Ghiglieri and G. D. Moore, hep-ph/1903.08064

$$
\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T}
$$

whereas for quarkonia the relevant quantity is

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T}
$$

Heavy quark and quarkonia correlators

a small, yet consequential difference

What we just found, and had been noticed even earlier by Eller, Ghiglieri and Moore, is simply stating that:
Y. Burnier, M. Laine, J. Langelage and L. Mether, hep-ph/1006.0867

$$
T_{F}\left\langle E_{i}^{a}(t) \mathscr{W}^{a b}(t, 0) E_{i}^{b}(0)\right\rangle_{T} \neq\left\langle\operatorname{Tr}_{\text {color }}\left[U(-\infty, t) E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right]\right\rangle_{T}
$$

An axial gauge puzzle

 an apparent (but not actual) inconsistency- This finding presents a puzzle:

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

o If true, this would imply that:

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or
B. one of the correlators is not gauge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

B. one of the correlators is not gauge invariant.

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0$.
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

False: both definitions are explicitly invariant

An axial gauge puzzle an apparent (but not actual) inconsistency

- This finding presents a puzzle:
- Let's say we were able to set axial gauge $A_{0}=0 . \Longrightarrow$ The problem is here
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

- If true, this would imply that:
A. one of the calculations is wrong, or

Unlikely: we verified this independently
B. one of the correlators is not gauge invariant.

False: both definitions are explicitly invariant

BS and X. Yao, hep-ph/2205.04477

An axial gauge puzzle an apparent (but not actual) incons

- This finding presents a puzzle:

We verified that this difference between the correlators is gauge invariant using an interpolating gauge condition:

$$
G_{M}^{a}[A]=\frac{1}{\lambda} A_{0}^{a}(x)+\partial^{\mu} A_{\mu}^{a}(x)
$$

- Let's say we were able to set axial gauge $A_{0}=0 . \Longrightarrow$ The problem is here
- Then, the two correlation functions would look the same:

$$
T_{F}\left\langle E_{i}^{a}(t) E_{i}^{a}(0)\right\rangle_{T}=\left\langle\operatorname{Tr}_{\text {color }}\left[E_{i}(t) E_{i}(0)\right]\right\rangle_{T}
$$

o If true, this would imply that:
A. one of the calculations is wrong, or
B. one of the correlators is not gauge invariant.

Unlikely: we verified this independently

False: both definitions are explicitly invariant

The difference in terms of diagrams

 operator ordering is crucial!

The difference in terms of diagrams

operator ordering is crucial!

Perturbatively, one can isolate the difference between the correlators to these diagrams.

The difference is due to different operator orderings (different possible gluon insertions).

The difference in terms of diagrams

 operator ordering is crucial!

Can we calculate this difference nonperturbatively in QCD?

A Lattice QCD perspective
 the imaginary time counterparts

- The heavy quark diffusion coefficient has been studied by evaluating the following correlation function (e.g., Altenkort et al. 2009.13553, Leino et al. 2212.10941):

$$
G_{\mathrm{fund}}(\tau)=-\frac{1}{3} \frac{\left\langle\operatorname{ReTr}_{c}\left[U(\beta, \tau) g E_{i}(\tau) U(\tau, 0) g E_{i}(0)\right]\right\rangle}{\left\langle\operatorname{ReTr}_{c}[U(\beta, 0)]\right\rangle}
$$

- The heavy quark diffusion coefficient is extracted by reconstructing the corresponding spectral function (Caron-Huot et al. 0901.1195):

$$
G_{\text {fund }}(\tau)=\int_{0}^{+\infty} \frac{d \omega}{2 \pi} \frac{\cosh \left(\omega\left(\tau-\frac{1}{2 T}\right)\right)}{\sinh \left(\frac{\omega}{2 T}\right)} \rho_{\text {fund }}(\omega), \quad \kappa_{\text {fund }}=\lim _{\omega \rightarrow 0} \frac{T}{\omega} \rho_{\text {fund }}(\omega) .
$$

- Main difficulty: it is a noisy observable to extract.

A Lattice QCD perspective
 the imaginary time counterparts

- The heavy quark diffusion coefficient has been studied by evaluating the following correlation function (e.a.. Altenkort et al. 2009.13553. Leino et al. 2212.10941):

However, the quarkonia correlator counterpart in imaginary time has received much less attention:

- The I corre

$$
G_{\mathrm{adj}}(\tau)=\frac{T_{F} g^{2}}{3 N_{c}}\left\langle E_{i}^{a}(\tau) W^{a b}(\tau, 0) E_{i}^{b}(0)\right\rangle
$$

[ongoing work with P. Petreczky and X. Yao]

- Main difficulty: it is a noisy observable to extract.

So, we understand the weakly coupled limit in QCD, and are making progress on the lattice QCD formulation.

What about other tools at strong coupling?

Wilson loops in AdS/CFT

setup

- The holographic duality provides a way to formulate the calculation of analogous correlators in strongly coupled theories. [$\left.{ }^{* *}\right]$
- Wilson loops can be evaluated by solving classical equations of motion:

$$
\langle W[\mathscr{C}=\partial \Sigma]\rangle_{T}=e^{i S_{\mathrm{NG}}[\Sigma]}
$$

Strongly coupled calculation in $\mathcal{N}=4$ SYM

setup

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$

Strongly coupled calculation in $\mathcal{N}=4$ SYM

setup

- Field strength insertions along a Wilson loop can be generated by taking variations of the path \mathscr{C} :
$\left.\frac{\delta}{\delta f^{\mu}\left(s_{2}\right)} \frac{\delta}{\delta f^{\nu}\left(s_{1}\right)} W\left[\mathscr{C}_{f}\right]\right|_{f=0}=(i g)^{2} \operatorname{Tr}_{\text {color }}\left[U_{\left[1, s_{2}\right]} F_{\mu \rho}\left(\gamma\left(s_{2}\right)\right) \dot{\gamma}^{\rho}\left(s_{2}\right) U_{\left[s_{2}, s_{1}\right]} F_{\nu \sigma}\left(\gamma\left(s_{1}\right)\right) \dot{\gamma}^{\sigma}\left(s_{1}\right) U_{\left[s_{1}, 0\right]}\right]$
- Same in spirit as the lattice calculation of the heavy quark diffusion coefficient:

Quarkonia correlator in AdS/CFT

Quarkonium transport in AdS/CFT

Steps of the calculation:

1. Find the appropriate background solution

Quarkonium transport in AdS/CFT

Steps of the calculation:

1. Find the appropriate background solution

2. Introduce perturbations

Quarkonium transport in AdS/CFT

Steps of the calculation:

1. Find the appropriate background solution

2. Evaluate the deformed Wilson loop and take derivatives

. Introduce perturbations

Quarkonium transport in AdS/CFT

Steps of the calculation:

1. Find the appropriate background solution
2. Introduce perturbatio
3. Evaluate the deformed Wilson loop and take derivatives

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. on a discretized imaginary time lattice
C. at strong coupling in $\mathcal{N}=4$ SYM
- Next steps:
- Generalize the calculations to include a boosted medium
- Use them as input for quarkonia transport codes
- Stay tuned!

Summary and conclusions

- We have discussed how to calculate the chromoelectric correlators of the QGP that govern quarkonium transport
A. at weak coupling in QCD
B. on a discretized imaginary time lattice
C. at strong coupling in $\mathcal{N}=4$ SYM
- Next steps:
- Generalize the calculations to include a boosted medium
- Use them as input for quarkonia transport codes
- Stay tuned!

Extra slides

Time scales of quarkonia

Transitions between quarkonium energy levels
(the system)

$$
\begin{aligned}
\mathscr{L}_{\text {pNRQCD }}=\mathscr{L}_{\text {light quarks }}+\mathscr{L}_{\text {gluon }}+\int d^{3} r \operatorname{Tr}_{\text {color }} & {\left[S^{\dagger}\left(i \partial_{0}-H_{s}\right) S+O^{\dagger}\left(i D_{0}-H_{o}\right) O\right.} \\
& \left.+V_{A}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S+\text { h.c. }\right)+\frac{V_{B}}{2} O^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, O\}+\cdots\right]
\end{aligned}
$$

Lindblad equations for quarkonia at low T

 quantum Brownian motion limit \& quantum optical limit in pNRQCD- After tracing out the QGP degrees of freedom, one gets a Lindblad-type equation:

$$
\frac{\partial \rho}{\partial t}=-i\left[H_{\mathrm{eff}}, \rho\right]+\sum_{j} \gamma_{j}\left(L_{j} \rho L_{j}^{\dagger}-\frac{1}{2}\left\{L_{j}^{\dagger} L_{j}, \rho\right\}\right)
$$

- This can be done in two different limits within pNRQCD:

Quantum Brownian Motion:

$$
\begin{gathered}
\tau_{I} \gg \tau_{E} \\
\tau_{S} \gg \tau_{E}
\end{gathered}
$$

relevant for $M v \gg T \gg M v^{2}$

Quantum Optical:

$$
\begin{aligned}
& \tau_{I} \gg \tau_{E} \\
& \tau_{I} \gg \tau_{S}
\end{aligned}
$$

relevant for $M v \gg M v^{2}, T \gtrsim m_{D}$

QGP chromoelectric correlators

for quarkonia transport

$$
\left[g_{E}^{--}\right]_{i_{i i_{1}}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(\mathscr{W}_{2} E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right)\right)^{a}\left(E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right) \mathscr{W}_{1^{\prime}}\right)^{a}\right\rangle_{T}
$$

$$
\left(R_{1},-\infty\right) \quad\left(R_{2},-\infty\right)
$$

$$
\left[g_{E}^{++}\right]_{i_{2} i_{1}}^{>}\left(t_{2}, t_{1}, \mathbf{R}_{2}, \mathbf{R}_{1}\right)=\left\langle\left(E_{i_{2}}\left(\mathbf{R}_{2}, t_{2}\right) \mathscr{W} \mathscr{V}_{2}\right)^{a}\left(\mathscr{W}_{1} E_{i_{1}}\left(\mathbf{R}_{1}, t_{1}\right)\right)^{a}\right\rangle_{T}
$$

The correlators we discussed are also directly related to the correlators that define the transport coefficients in the quantum brownian motion limit:

$$
\begin{aligned}
\gamma & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Im} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle, \\
\kappa & \equiv \frac{g^{2}}{6 N_{c}} \operatorname{Re} \int_{-\infty}^{\infty} d s\left\langle\mathscr{T} E^{a, i}(s, \mathbf{0}) \mathscr{W}^{a b}[(s, \mathbf{0}),(0, \mathbf{0})] E^{b, i}(0, \mathbf{0})\right\rangle .
\end{aligned}
$$

The spectral function of quarkonia

symmetries and KMS relations

The KMS conjugates of the previous correlators are such that

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{++}\right]_{j i}^{<}(q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=e^{q^{0} / T}\left[g_{E}^{--}\right]_{j i}^{<}(q),
$$

and one can show that they are related by

$$
\left[g_{E}^{++}\right]_{j i}^{>}(q)=\left[g_{E}^{--}\right]_{j i}^{<}(-q), \quad\left[g_{E}^{--}\right]_{j i}^{>}(q)=\left[g_{E}^{++}\right]_{j i}^{<}(-q) .
$$

The spectral functions $\left[\rho_{E}^{++/--}\right]_{j i}(q)=\left[g_{E}^{++/--}\right]_{j i}^{>}(q)-\left[g_{E}^{++/--}\right]_{j i}^{<}(q)$ are not necessarily odd under $q \leftrightarrow-q$. However, they do satisfy:

$$
\left[\rho_{E}^{++}\right]_{j i}(q)=-\left[\rho_{E}^{--}\right]_{j i}(-q) .
$$

How the calculation proceeds

what equations do we need to solve?

- The classical, unperturbed equations of motion from the Nambu-Goto action to determine Σ :

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det}\left(g_{\mu \nu} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu}\right)} .
$$

- The classical, linearized equation of motion with perturbations in order to be able to calculate derivatives of $\left\langle W\left[\mathscr{C}_{f}\right]\right\rangle_{T}=e^{i S_{\mathrm{NG}}\left[\Sigma_{f}\right]}$:

$$
S_{\mathrm{NG}}\left[\Sigma_{f}\right]=S_{\mathrm{NG}}[\Sigma]+\left.\int d t_{1} d t_{2} \frac{\delta^{2} S_{\mathrm{NG}}\left[\Sigma_{f}\right]}{\delta f\left(t_{1}\right) \delta f\left(t_{2}\right)}\right|_{f=0} f\left(t_{1}\right) f\left(t_{2}\right)+O\left(f^{3}\right)
$$

- In practice, the equations are only numerically stable in Euclidean signature, so we have to solve them and analytically continue back.

Extracting the EE correlator for quarkonia

the pipeline

1) Solve for the background worldsheet solution:

J.P. Boyd, "Chebyshev and Fourier Spectral Methods," Dover books on Mathematics (2001)
2) Solve for the fluctuations with a source as a boundary condition:

3) Extrapolate in the limit $L \rightarrow 0$:

