# Recent ATLAS measurements in heavy-ion collisions



Sebastian Tapia Araya
Universidad Tecnica Federico Santa Maria
for the ATLAS collaboration



12 January 2023, Valparaiso, Chile

## Recent jet measurements in heavy-ion collisions with ATLAS





Sebastian Tapia Araya
Universidad Tecnica Federico Santa Maria
for the ATLAS collaboration



12 January 2023, Valparaiso, Chile

## Medium induced Energy loss



# From Run1 to Run2; Better precision but no significant difference in Jet energy loss measurements

Jets are known to lose energy when going through the Quark-Gluon-Plasma

What else can we learn about the medium?

## Medium induced Energy loss



Suppression quantified by the nuclear modification factor:

$$R_{AA} = \frac{N(Pb(Pb))}{N_{Coll} \times N(PP)}$$

- $R_{AA} < 1 \rightarrow suppression$ .
- Suppression is stronger for more central collisions.

## Medium induced Energy loss



### Centrality: event activity



Central collisions

- -> larger volumen QGP
- —> more suppression

Color-charge dependence

Quarks



Gluons



QCD suggest, gluons are more likely to radiate than quarks

Mass dependence expected due to "dead-cone effect"

Large parton mass

Small parton mass





Color-coherence of in-medium energy loss



What is the resolution scale of the medium?

Radiation is suppressed in θ < m/E

## b-jets vs inclusive jets



Sensitive to color-charge and parton mass

## y-tagged jets vs inclusive jets



Sensitive to color-charge

## b-jets from semi-leptonic decays

jet+muon axis



 $p_T^{rel} = |\overrightarrow{p}_{\mu} \times \overrightarrow{u}||, \text{ where } \overrightarrow{u} = \frac{\overrightarrow{p}_{jet+\mu}}{|\overrightarrow{p}_{jet+\mu}||} \text{ is the } jet + \mu \text{ axis}$ 



- Muon  $p_T > 4 \text{ GeV}$
- $\Delta R$ (jet,muon) < R

Raw *b*-jet spectra obtained from fit is **unfolded** to correct detector effects and **missing neutrino energy** 





Nuclear modification factor,  $R_{AA}$ , measured for b-jets and inclusive jets:

- Similar suppression in peripheral collisions
- b-jets found to be less suppressed than inclusive jets in central collisions
- Both calculations capture the  $R_{AA}$  difference
- LIDO calculations reproduce well the measured  $R_{AA}$



Nuclear modification factor,  $R_{AA}$ , measured for b-jets and inclusive jets:

- Similar suppression in peripheral collisions
- b-jet found to be less suppressed than inclusive jets in central collisions
- Both calculations capture the  $R_{AA}$  difference
- LIDO calculations reproduce well the measured  $R_{AA}$



Ratio of nuclear modification factor,  $R_{AA}$ , between b-jets and inclusive jets:

- Smaller systematic uncertainties than  $R_{AA}$ , systematic uncertainties which are shared cancels in ratio
- Ratio consistent with unity in peripheral and ~20% above unity in central collisions
- Dai et al, calculations reproduce well  $R_{AA}$  ratio



Ratio of nuclear modification factor,  $R_{AA}$ , between b-jets and inclusive jets:

- Smaller systematic uncertainties than  $R_{AA}$ , systematic uncertainties which are shared cancels in ratio
- Ratio consistent with unity in peripheral and ~20% above unity in central collisions
- Dai et al, calculations reproduce well  $R_{AA}$  ratio

#### We have studied how mass can modify quenching

b-jets vs inclusive jets

Sensitive to color-charge and

parton mass

Now, can we ask the same question about color-charge?

**y-tagged jets** vs inclusive jets

Sensitive to color-charge

## y-tagged jets analysis



- Combinatorial background removed
- Correction for background photons using photon purity
- 2D unfolding in  $\gamma$  and jet momentum
  - Corrects for resolutions, efficiency



Nuclear modification factor,  $R_{AA}$ , measured for  $\gamma$ -tagged jets and inclusive jets from *PLB 790 (2019) 108*:

- $\gamma$ -tagged jets  $R_{AA}$  measured for three centrality classes
- y-tagged jets (quark-jet dominant)
   found to be less suppressed than inclusive (gluon-jet dominant) jets in central collisions





Central collisions nuclear modification factor,  $R_{AA}$ , of inclusive jets,  $\gamma$ -tagged jets, and ratio:

• Inclusive jets  $R_{AA}$ , is well modeled by theoretical calculations



Data
Takacs et al.
LIDO ( $\mu$ =1.3-1.8 $\pi$ T)
SCET<sub>G</sub> ( $g_4$ =1.8-2.2)
CoLBT
JEWEL

**Central collisions** nuclear modification factor,  $R_{AA}$ , of inclusive jets,  $\gamma$ -tagged jets, and ratio:

- Inclusive jets  $R_{AA}$ , is well modeled by theoretical calculations
- $\gamma$ -tagged jets  $R_{AA}$ , in general, under-estimated by theoretical calculations
- SCET<sub>G</sub> reproduces both, this results could help constrain the parameter space



**Central collisions** nuclear modification factor,  $R_{AA}$ , of inclusive jets,  $\gamma$ -tagged jets, and ratio:

- Inclusive jets  $R_{AA}$ , is well modeled by theoretical calculations
- $\gamma$ -tagged jets  $R_{AA}$ , in general, under-estimated by theoretical calculations
- SCET<sub>G</sub> reproduces both, this results could help constrain the parameter space
- R<sub>AA</sub> ratio ~30% above unity in central collisions

## What is the resolution scale of the medium? Looking inside the jet

#### Sub-Structure procedure:

- Jets are reclustered with C/A algorithm and iteratively declustered till the subjets satisfy the Soft Drop (SD) condition
- rg and jet p⊤ are unfolded using 2D Bayesian unfolding to the truth level



SD condition:

$$z_g = \frac{min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}} > 0.2$$

Observable:

$$r_{g} = \Delta R_{i,j}$$
 Between the subjets satisfying the SD conditions

## r<sub>g</sub> distribution



- In general shape well modeled by generators
- rg distribution shape has jet p⊤ dependence but little centrality dependence

## Suppression dependence to rg



- Flatter R<sub>AA</sub> as a function of p<sub>T</sub> when bin in r<sub>g</sub>
- More suppression was observed for larger rg jets

## Suppression dependence to rg



- Clear rg dependence to RAA
- rg, not jet p<sub>T</sub>, determines the R<sub>AA</sub>

## Suppression dependence to rg



- RAA vs. rg trend reproduced for most energy loss models
  - even those not including coherence
  - o due to quenching-induced change in quark-gluon fractions?

## Summary

#### ATLAS new jet results show;

Less suppression for **b-jets** than inclusive, mass-dependent Eloss Less suppression for **y-tagged** jets than inclusive, flavor-dependent Eloss Less suppression for smaller rg jets, angular scale of splitting-dependent Eloss

## Can all be explained by differences in flavor fractions? 🚱









New and more precise results coming for RUN3 data!

## Additional slides

## **b-jets** muon fragmentation

p<sub>T</sub>-rel is sensitive to muon momentum modeling

Independent test on muon fragmentation function, "z", using measured flavor-fractions

$$z = p_T^{\mu} cos(\theta) / p_T^{jet + \mu}$$

## The muon momentum distribution is well reproduced by PYTHIA8

PYTHIA8 setting:

- **A14** (ATLAS-PHYS-PUB-2014-021)
- **NNPDF23LO** (arXiv:1207.1303)



## b-jets pp cross-section



- b-jet cross-section measured for Jet R = 0.2, and 0.4 in pp collisions
- Fully unfolded results include neutrino energy, b-jet p<sub>T</sub> range: 80-250 GeV
- Results are compared against generators and theoretical calculations



## b-jets RAA CMS comparison



## **b-jets** systematics









2018-11-15 22:59:24 CEST



- Good agreement found between data and simulation in the ratio
- Comparison to CMS results consistent within errors
- Ratio consistent with flat withing uncertainties, relevant  $R_{AA}$  modification interpretation

## **y-tagged jets** pp cross-section



- $\gamma$ -tagged jets cross-section measured for Jet R=0.4 in pp collisions
- Fully unfolded results, γ-tagged jets p<sub>T</sub> > 50 GeV
- Results are compared against generators
  - Good agreement up to 100 GeV
  - Data spectra steeper than MC for p<sub>T</sub> > 100 GeV
  - Sensitive to multijet topology, fragmentation photon contribution
  - Opportunity to improve modeling



**y-tagged jets** measured for three centralities classes in Pb+Pb data

 $\gamma$ -tagged jets to inclusive R=0.4 cross-section ratio:

- Relevant for  $R_{AA}$  modification interpretation
  - Inclusive jet spectra steeper than γ-tagged jets
    - —> less suppression for γ-tagged jets
  - Isospin/nPDF effect also plays an important role
    - —> larger suppression for γ-tagged jets
  - The two effects are expected to have similar magnitude but opposite sign

|                      | Vitev                                                               | Wang                                                                                                                                                                                  | LIDO                                                                                                                                                                                 |
|----------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vacuum<br>(Baseline) | Calculated: PDF+hard kernel+semi- inclusive jet functions           | SHERPA                                                                                                                                                                                | PYTHIA8                                                                                                                                                                              |
| Medium               | Calculated:<br>nPDF+ <b>Medium</b> semi-<br>inclusive jet functions | Modified Langevin transport model                                                                                                                                                     | Linear partonic<br>transport model                                                                                                                                                   |
| Hydro                | (2+1)D viscous<br>hydrodynamics averaged<br>over multiple events    | Smooth iEBE-VISHNU<br>hydro model                                                                                                                                                     | (2+1)D viscous<br>hydrodynamics with<br>averaged initial conditions                                                                                                                  |
| Hadronization        |                                                                     | SHERPA                                                                                                                                                                                | PYTHIA8                                                                                                                                                                              |
| Parameters           | g = 1.8-2.2, jet-medium<br>coupling                                 | $q_0 = 1.2$ GeV <sup>2</sup> /fm, local parton density in medium initial value. $T_c = 165$ MeV, hot medium termination temperature. $2\pi TD_s = 4$ , Spatial diffusion coefficient. | $Q_0$ =1.8 GeV switching scale between vacuum parton shower and transport equation. $T_f$ = 165 MeV, hot medium termination temperature. $\mu_{min}$ = 1.5—2.0, jet-medium coupling. |

## CENTRALITY



Centrality is parametrized using the energy deposited in the Forward calorimeter