

Search for Higgs pair production at the LHC with the ATLAS detector

Edson Carquin (UTFSM)

On behalf of the ATLAS Collaboration

https://atlas-utfsm.web.cern.ch/

Why looking for Higgs pairs at LHC?

• In the SM, Higgs pair production is driven by the (still unmeasured) Higgs self-coupling $\lambda_{HHH} = \frac{m_H^2}{2v}$

(with $m_H = 125 \ GeV$ and $v = 246 \ GeV$)

- λ_{HHH} plays a crucial role in the Electroweak Symmetry breaking mechanism.
- New Physics can cause resonant Higgs pair production and/or introduce modifications on the effective Higgs self-coupling enhancing DiHiggs production rates.

SM Higgs mass production mechanism can be tested!

How to measure Higgs pair production at the LHC

Then combine all production and decay modes together

Decay

Full	Run	2
ATLA	S	
sear	ches	$\mathbf{\tilde{b}}$

Decay channel	Target production mode	Reference	Release date
bb yy	Non-resonant (ggF*) & resonant	<u>Phys. Rev. D 106</u> 052001	22 Dec 2021
bbττ	Non-resonant (ggF*) & resonant	<u>arXiv:2209.10910</u>	22 Sep 2022
	Resonant (merged H→ττ & H→bb)	<u>JHEP 11 (2020) 163</u>	29 July 2020
bbbb	Resonant	Phys. Rev. D 105 092002	15 Feb 2022
	Non-resonant (ggF & VBF)	<u>arXiv:2301.03212</u> NEW!	30 May 2022
	VHH (leptonic V, res. & non-res.)	<u>arXiv:2210.05415</u>	11 Oct 2022
bblvlv	Non-resonant (ggF)	<u>Phys. Lett. B 801</u> <u>135145</u>	19 Aug 2019
Combination	Non-resonant & resonant (ggF*)	ATLAS-CONF-2021- 052	16 Oct 2021
	Non-resonant + single Higgs	<u>arXiv:2211.01216</u>	3 Nov 2022
Interpretations	HEFT interpretations	<u>ATL-PHYS-PUB-</u> 2022-019	18 Mar 2022

* VBF accounted for, but not specifically targeted 6

$HH \rightarrow bb\tau\tau$ Resonant/Non-resonant search

- Three signal regions considered:
 - $\tau_h \tau_h$ (fully hadronic)
 - $\tau_l \tau_h$ (semi-leptonic), single lepton and lepton+tau triggers considered separetely
- Multiple background sources are important for this analysis, most of them are estimated from simulation.
- Background sources containing fake- τ_{had} in $t\bar{t}$ and multijet production are estimated by the fake factor method, by using template distributions obtained in fake enriched regions.
- Parametrized neural networks (PNN) are trained as a function of the resonant mass in this search.

The largest deviation is found for the resonant case at a mass of 1 TeV, corresponding to a global significance of 2.0 σ

arXiv:2209.10910

HH→bb $\tau\tau$ Resonant/Nonresonant search

- For the non-resonant analyses a BDT/NN is trained for the $\tau_h \tau_h / \tau_l \tau_h$ channels Respectively.
- The data is found to be compatible with the backgroundonly assumption.

• The non-resonant limits are the second better, only beaten by $bb\gamma\gamma$ atm!

arXiv:2209.10910

Vhh $(hh \rightarrow bbbb)$ Resonant and non-resonant search FIRST time at LHC

- 0, 1 and 2 lepton selections for Z → vv (MET), W → lv and Z → ll associated production.
- Interpreted in:
 - Two resonant benchmark models: Narrow scalar and 2HDM
 - SM-like κ framework ($\kappa_V, \kappa_{2V}, \kappa_{\lambda}$)
- BDT discriminant constructed for each number of leptons categories and for each signal model.
- Main backgrounds from top and V+jets, constrained in dedicated CRs.

9

SM-like signal strength limit set at 183 (87) times σ_{SM} @ 95% CL

Vhh (*hh* → *bbbb*) Resonant and nonresonant search

Cross section limits on the narrow scalar benchmark model

arXiv:2210.05415

Vhh $(hh \rightarrow bbbb)$ Resonant and nonresonant search

Setting limits on 2HDM model through

 $A \to ZH \to Zhh$

• Narrow and Large (20%) Pseudoscalar widths considered

• Largest excess $(Z_{global} = 2.8\sigma)$ found in large-width scenario @ $(m_A, m_H) = (420, 320) GeV$

$hh \rightarrow bbbb$ non-resonant search

- Fully hadronic channel with the largest BR, but a difficult to estimate background from multijets (90%) and $t\bar{t}$ (10%).
 - ✓ Fully data driven method
 - ✓ NN based (trained) extrapolation from 2 b-tag to 4 b-tag data CRs.
- ggF and VBF signal regions optimized separately
 - ✓ Using m_{hh} as discriminating variable

arXiv:2301.03212

$hh \rightarrow bbbb$ non-resonant search

New signal strength limits for SM–like production are: 2.5 (ggF) and 4.1 (VBF) times better than the previous result

Limits are also set on κ_{λ} (HHH coupling) and κ_{2V} (HHVV couplings)

arXiv:2301.03212

HH+H combination

Adding EW first order corrections to single Higgs production involving the HHH coupling, and combine with direct HH searches

Combine the three most sensitive channels for SM-like signal strength limits.

Getting closer in SM cross section!

HH+H combination

Combination provides the strongest constraints to date on κ_λ and κ_{2V}

- κ_{λ} limits dominated by HH channels
- κ_{2V} limits driven by HH \rightarrow bbbb, as it has a dedicated VBF selection

HH+H combination

- Single Higgs + HH combination produce stronger constraints on κ_{λ} , κ_t plane compared to single-H only.
- κ_{λ} limits are obtained in a variety of combination assumptions

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
<i>HH</i> + <i>H</i> combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_\lambda < 6.1$	$-2.2 < \kappa_\lambda < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

arXiv:2211.01216

Resonant searches combined

Summary & Outlook

- ATLAS has developed an extensive search program for double Higgs production using the full Run 2 dataset obtaining plently of new results.
- The double Higgs (+ single Higgs) analyses combinations provide the best limits to date in κ_{λ} and κ_{2V} found by ATLAS, getting closer to the SM expected values and providing strong constraints in a wealth of BSM models.
- A bunch of new results using the full Run 2 data expected to appear soon and with the advent of fresh data from Run 3 improved limits can be expected.

