Machine Learning on FPGAs for Real-Time Processing for the ATLAS Liquid Argon Calorimeter

Lauri Laatu on behalf of the ATLAS Liquid Argon Calorimeter Group 12.01.2023

Content

- 1. Background
- 2. Network Architectures
- 3. Network Performance
- 4. FPGA Implementation
- 5. Conclusion

The Phase-II Upgrade of the LHC

Upgrade of the ATLAS experiment

- The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
 - To increase the luminosity to study rare processes
 - To increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing
- The detectors will be upgraded to cope with the high collision rate at the HL-LHC
 - In particular the ATLAS calorimeter readout electronics will be completely replaced

ATLAS Liquid Argon Calorimeter

Energy reconstruction in the LAr calorimeter

- The Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by electromagnetically interacting particles
 - Consisting of \approx 182 000 calorimeter cells
- Passing particles ionize the material
 - Bipolar pulse shape with total length of up to 750 ns (30 BCs)
 - Pulse is sampled and digitized at 40MHz
- Energy reconstruction is done in real-time and used in triggering decision
 - Using the digitized samples from the pulse

Energy Reconstruction

Energy reconstruction in the LAr calorimeter

 Current energy reconstruction uses the Optimal Filtering Algorithm with maximum finder (OFMax)

$$E(t) = \sum_{i=1}^{5} a_i \cdot s_i$$

- a_i Predefined coefficients to fit the pulse
- s_i Sampled signal
- Distorted pulses result in significantly decreased performance of OFMax

LAr Electronics Upgrade

Energy Reconstruction in Run-4

- LAr Signal Processor (LASP) board
 - For Phase-II one FPGA processes 384 channels and latency requirement of 125 ns
- Phase-II electronics with high-end FPGAs
 - Increased computing capacity
 - Improved online energy reconstruction using machine learning-based methods

- 1. Background
- 2. Network Architectures
- 3. Network Performance
- FPGA Implementation
- 5. Conclusion

RNN Architecture

Time series processing with Recurrent Neural Networks (RNNs)

- Recurrent Neural Networks (RNNs) are designed to process time series data
- RNNs consist of neural network layers that process by combining new time input with past processed state
- Vanilla RNN is the smallest RNN structure
- Long Short-Term Memory (LSTM) network for efficiently handling past information

RNNs for Energy Reconstruction

Using many-to-one and many-to-many networks for energy reconstruction

- Use digitized samples as inputs for the recurrent network
- Sliding window
 - Full sequence split into overlapping subsequences with a sliding window
 - One energy prediction per subsequence
 - Four samples in the peak, one in the past
 - Possible for Vanilla RNN and LSTM
- Single cell
 - Use the LSTM cell to process all digitized samples in one continuous chain instead of a sliding window
 - Full history of events available
 - Possible only for LSTM

CNN Architecture

Time series processing with Convolutional Neural Networks (CNNs)

- 1D convolutional network for time series regression
- Pulse tagging layers
 - Two layers to classify pulses above 240MeV
- Energy reconstruction
 - Add on top another layer for energy reconstruction
 - Conv3: 5 samples in the peak, 23 in the past with 3 total layers
 - Conv4: 5 samples in the peak, 8 in the past with 4 total layers

- 1. Background
- 2. Network Architectures
- 3. Network Performance
- 4. FPGA Implementation
- 5. Conclusion

NN Performance

Resolution and network size

- Overall better energy resolution than OFMax
 - Smaller tails and mean closer to zero.
- Best performance with LSTM
 - Too large to fit on the FPGA
- CNNs and Vanilla RNN perform well with fewer parameters

Algorithm	LSTM (single)	LSTM (sliding)	Vanilla (sliding)	CNN (3-conv)	CNN (4-conv)	Optimal filtering
Number of parameters	491	491	89	94	88	5
MAC units	480	2360	368	87	78	5

NN Performance

Resolution as a function of gap to previous energy deposit in BCs

- Clear performance decrease with OFMax at low gap
- All NNs perform better with overlapping events
 - More past samples allows for better correction of overlapping events

- 1. Background
- 2. Network Architectures
- 3. Network Performance
- 4. FPGA Implementation
- 5. Conclusion

Firmware Implementation

Running in the FPGA

- Implementation on Stratix 10 FPGA
- CNNs implemented in VHDL
- RNNs implemented in HLS
- O(1%) resolution
 - Fixed-point arithmetic
 - Look-up tables for activation functions
- Implementations are close to requirements in term of resource usage and latency, demonstrating feasibility but additional tuning is required

	3-Conv CNN	4-Conv CNN	Vanill RNN
Multiplicity	6	6	15
Frequency			
F _{max} [MHz]	344	334	640
Latency			
clk _{core} cycles	81	62	120
Initiation interval			
clk _{core} cycles	1	1	1
Max. Channels	390	352	576
Resource Usage			
#DSPs	46	42	152
	0.8%	0.7%	2.6%
#ALMs	14235	15627	5782
	1.5%	1.7%	0.6%

RNN Implementation in VHDL

Running in the FPGA

- Further optimisation of RNN implementation in VHDL for better tuning of the placement
- Incremental compilation with forced placement
 - Tackle timing violations
- Multiplexing to compute several networks simultaneously

	N networks x multiplexing	ALM	DSP	FMax	latency
target	384 channels	30%*	70%*	-	125 ns
HLS (no multiplexing)	384x1	226%	529%	-	322 ns
HLS optimized	37x10	23%	100%	414 MHz	302 ns
VHDL optimized	28x14	18%	66%	561 MHz	121 ns

Reconstruction for Full Detector

Pulse Clustering

- Pulse shape differs in the detector
 - Reduced performance with differing pulse shapes
 - One NN training will not perform well for the full detector, nor is 182k NNs feasible
 - Need to reduce the number of NNs trained while maintaining accuracy
- Clustering method used to group detector regions
 - t-SNE from calibration pulses to acquire clustering
 - DBSCAN to automatically classify cluster
 - Separation correlates with η according to pulse shape differences

Pulse Clustering

Reconstruction in different regions

- Evaluate inside same cluster
 - Train with one cell, test with another
 - Same performance as with training and testing with the same cell
- Large performance drop when training with one cluster and testing with another
- Train with mixed data from all clusters, test with single cluster
 - Mixing data across clusters slightly restores performance

- 1. Background
- 2. Network Architectures
- 3. Network Performance
- 4. FPGA Implementation
- 5. Conclusion

Conclusion

Energy reconstruction using recurrent neural networks

- Energy reconstruction with CNNs and RNNs overperforms legacy algorithms in Phase-II conditions
 - Better energy resolution overall
 - Better recovery of energy resolution with overlapping signals
- Implemented and validated in firmware and the implementations mostly fulfill the LAr real-time processing requirements
 - Testing on DevKits started and is showing good results
- Next step is to quantify the effect on object (electrons, photons) reconstruction and physics performance
- Paper published available

