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The Phase-II Upgrade of the LHC
Upgrade of the ATLAS experiment
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• The High Luminosity LHC (HL-LHC) is an important milestone for particle physics
• To increase the luminosity to study rare processes
• To increase the collision rate to up to 200 simultaneous p-p collisions (pileup) per bunch crossing

• The detectors will be upgraded to cope with the high collision rate at the HL-LHC
• In particular the ATLAS calorimeter readout electronics will be completely replaced

2/19



ATLAS Liquid Argon Calorimeter
Energy reconstruction in the LAr calorimeter

• The Liquid Argon Calorimeter (LAr) mainly measures the energy deposited by
electromagnetically interacting particles

• Consisting of≈ 182 000 calorimeter cells
• Passing particles ionize the material

• Bipolar pulse shape with total length of up to 750 ns (30 BCs)
• Pulse is sampled and digitized at 40MHz

• Energy reconstruction is done in real-time and used in triggering decision
• Using the digitized samples from the pulse
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Energy Reconstruction
Energy reconstruction in the LAr calorimeter

• Current energy reconstruction uses the
Optimal Filtering Algorithm with maximum
finder (OFMax)

E(t) =
5∑

i=1

ai · si

• ai - Predefined coefficients to fit the pulse
• si - Sampled signal

• Distorted pulses result in significantly
decreased performance of OFMax
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LAr Electronics Upgrade
Energy Reconstruction in Run-4

• LAr Signal Processor (LASP) board
• For Phase-II one FPGA processes 384 channels and latency requirement of 125 ns

• Phase-II electronics with high-end FPGAs
• Increased computing capacity
• Improved online energy reconstruction using machine learning-based methods
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RNN Architecture
Time series processing with Recurrent Neural Networks (RNNs)

• Recurrent Neural Networks (RNNs) are
designed to process time series data

• RNNs consist of neural network layers that
process by combining new time input with
past processed state

• Vanilla RNN is the smallest RNN structure
• Long Short-Term Memory (LSTM) network for
efficiently handling past information

Vanilla LSTM
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RNNs for Energy Reconstruction
Using many-to-one and many-to-many networks for energy reconstruction

• Use digitized samples as inputs for the
recurrent network

• Sliding window
• Full sequence split into overlapping
subsequences with a sliding window

• One energy prediction per subsequence
• Four samples in the peak, one in the past
• Possible for Vanilla RNN and LSTM

• Single cell
• Use the LSTM cell to process all digitized
samples in one continuous chain instead of a
sliding window

• Full history of events available
• Possible only for LSTM
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CNN Architecture
Time series processing with Convolutional Neural Networks (CNNs)

• 1D convolutional network for time series
regression

• Pulse tagging layers
• Two layers to classify pulses above 240MeV

• Energy reconstruction
• Add on top another layer for energy
reconstruction

• Conv3: 5 samples in the peak, 23 in the past
with 3 total layers

• Conv4: 5 samples in the peak, 8 in the past
with 4 total layers
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NN Performance
Resolution and network size

• Overall better energy resolution than OFMax
• Smaller tails and mean closer to zero

• Best performance with LSTM
• Too large to fit on the FPGA

• CNNs and Vanilla RNN perform well with fewer
parameters 0.8− 0.6− 0.4− 0.2− 0 0.2
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NN Performance
Resolution as a function of gap to previous energy deposit in BCs

• Clear performance decrease with
OFMax at low gap

• All NNs perform better with
overlapping events

• More past samples allows for
better correction of overlapping
events
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Firmware Implementation
Running in the FPGA

• Implementation on Stratix 10 FPGA
• CNNs implemented in VHDL
• RNNs implemented in HLS
• O(1%) resolution

• Fixed-point arithmetic
• Look-up tables for activation functions

• Implementations are close to requirements in
term of resource usage and latency,
demonstrating feasibility but additional tuning
is required
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RNN Implementation in VHDL
Running in the FPGA

• Further optimisation of RNN implementation
in VHDL for better tuning of the placement

• Incremental compilation with forced
placement

• Tackle timing violations
• Multiplexing to compute several networks
simultaneously
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Reconstruction for Full Detector
Pulse Clustering

• Pulse shape differs in the detector
• Reduced performance with differing pulse
shapes

• One NN training will not perform well for the
full detector, nor is 182k NNs feasible

• Need to reduce the number of NNs trained
while maintaining accuracy

• Clustering method used to group detector
regions

• t-SNE from calibration pulses to acquire
clustering

• DBSCAN to automatically classify cluster
• Separation correlates with η according to
pulse shape differences
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Pulse Clustering
Reconstruction in different regions

Evaluate inside same cluster
• Train with one cell, test with another
Same performance as with training and testing
with the same cell

Large performance drop when training with
one cluster and testing with another
Train with mixed data from all clusters, test
with single cluster

• Mixing data across clusters slightly restores
performance
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Conclusion
Energy reconstruction using recurrent neural networks

• Energy reconstruction with CNNs and RNNs
overperforms legacy algorithms in Phase-II conditions

• Better energy resolution overall
• Better recovery of energy resolution with overlapping
signals

• Implemented and validated in firmware and the
implementations mostly fulfill the LAr real-time
processing requirements

• Testing on DevKits started and is showing good results
• Next step is to quantify the effect on object (electrons,
photons) reconstruction and physics performance

• Paper published available Here
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