Majorons and Neutrino Masses in the Type 1 Seesaw Mechanism

Gustavo Ardila ^{1, 2}, Andres Florez ¹, Werner Rodejohann ³, Oscar Zapata⁴

¹ Universidad de los Andes, ² Universität Heidelberg, ³ Max Planck Institut für Kernphysik, ⁴ Universidad de Antioquia

7th COMHEP, Villa de Levva, December 1st 2022

Overview

- 1 The Type 1 Seesaw Mechanism
- 2 Generating Neutrino Masses: The Majoron
- 3 Phenomenological Analysis
- 4 Conclusions

The Type 1 Seesaw Mechanism

One can explain the small neutrino masses by introducing 3 Majorana neutrinos with mass term

$$-\mathcal{L} \supset \frac{1}{2} \bar{\nu}_L^c M_M \nu_R + h.c \tag{1}$$

- Lepton number violation can be used to explained baryon assymetry in the universe through leptogenesis. Can be promoted to a symmetry that gets broken at a certain scale
- General mass Lagrangian considers both Dirac and Majorana masses

$$-\mathcal{L} \supset \frac{1}{2} \bar{\nu}_L^c M_N \nu_R + h.c; \quad \nu_R = (\nu_L^c, \nu_R)$$
 (2)

Mass matrix is non diagonal

$$M_N = \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \tag{3}$$

Weak eigenstates ≠ mass eigenstates

• If $M_M >> M_D$ the diagonal mass matrix becomes

$$M_N' = \begin{pmatrix} M_M & 0 \\ 0 & -M_M^{-1} M_D^T M_D \end{pmatrix} \tag{4}$$

- Type 1 Seesaw explains why measured mass values are so small. However, L gets broken by two units and M_M is put by hand.
- One can then promote L, or B-L, to an approximate global symmetry that becomes spontaneously broken at the Seesaw scale.
- Introduce scalar singlet φ with potential

$$V(\phi) = m_{\varphi}^{2} \varphi^{\dagger} \varphi + \frac{\lambda_{\varphi}}{4} (\varphi^{\dagger} \varphi)^{2} + V(\phi, \varphi)$$
 (5)

$$-\mathcal{L} \supset \frac{1}{2} y_{ij} \bar{\nu}_L^{c,i} \varphi \nu_R^j + h.c \tag{6}$$

It is possible to parametrize φ around the new VEV as (Kibble parametrization)

$$\varphi = \frac{1}{\sqrt{2}}(f + A + iJ) \tag{7}$$

- \blacksquare Goldstone theorem \to J gets massive. Referred to as the Majoron.
- If Seesaw scale = Peccei-Quinn scale, Majoron = Axion.

 After SSB, Majorana mass terms are obtained as well as Neutrino-Majoron interactions

$$-\mathcal{L} \supset \frac{1}{2} (M_{M})_{ij} \bar{\nu}_{L}^{c,i} \nu_{R}^{j} + \frac{1}{2\sqrt{2}} y_{ij} \bar{\nu}_{L}^{c,i} A \nu_{R}^{j} + \frac{i}{2\sqrt{2}} y_{ij} \bar{\nu}_{L}^{c,i} J \nu_{R}^{j}$$
(8)

Rewrite Neutrino-J couplings in terms of the masses

$$\mathcal{L}_{J} = \frac{im_{N}}{2f} \bar{\nu}_{L}^{c} J \nu_{R} + h.c \tag{9}$$

In terms of the three massive neutrino eigenstates

$$\mathcal{L}_{J} = \frac{im_{N}}{2f}\bar{n}_{i}Jn_{i} + h.c \tag{10}$$

- Majoron production at the LHC has not been largely studied.
- Three fundamental production mechanisms were studied. First one: W mediated production of a Majoron.

Figure: W mediated production of a J (W Channel)

The second production mechanism emulates the signal from the $0\nu\beta\beta$ decay, and is obtained through indirect Vector Boson Fusion (VBF) processes

Figure: J production via VBF

■ Third production mechanism \rightarrow Drell-Yan

Figure: J production via DY process

Figure: Behavior of the three different production cross sections as a function of N_3 mass for $f = 300 \, GeV$ and $m_I = 100 \, GeV$.

- Cross sections are too small for the process to be observed at the LHC
- This part of the work was carried with non decaying J
- Lower energy experiments can be a better probe to the parameter space

0000000000000000

Current focus: 2 loop couplings to photons

Figure: Example of 2 loop coupling to vector bosons

Coupling at two loops is given by

$$g_{\gamma\gamma} = \frac{\alpha}{8\pi^3 v^2 f} \left\{ Tr(M_D M_D^{\dagger}) \sum_f N_c^f Q_f^2 T_3^f h\left(\frac{m_J^2}{4m_f^2}\right) + \sum_\ell (M_D M_D^{\dagger})_{\ell\ell} h\left(\frac{m_J^2}{4m_f^2}\right) \right\}$$

$$(11)$$

Partial decay width is given by

$$\Gamma(J \to \gamma \gamma) = \frac{|g_{\gamma \gamma}|^2 m_J^3}{64\pi} \tag{12}$$

Limits on the trace values

Figure: J. Heeck, H. Pattel Phys. Rev. D 100, 095015 (2019)

The Type 1 Seesaw Mechanism

Two scenarios were considered to calculate the lifetime of the Majoron, namely large $(\tau \ge 1 \times 10^{17} s)$ and short $(\tau \le 1s)$ values. These calculations were performed by fixing one of the free parameters and allowing the other two to run in a certain range. \rightarrow Heat maps were made.

Heat Maps: Fixed VEV and large au

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=50GeV. Dashed line represent the age of the universe

Phenomenological Analysis

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=300GeV. Dashed line represents the age of the universe

Heat Maps: Fixed VEV and large au

The Type 1 Seesaw Mechanism

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=1TeV. Dashed lines represent the age of the universe.

- Increasing the VEV changes the mass values from around 16 MeV to 37 MeV.
- \blacksquare Highest τ value also increases with the VEV.

Heat Maps: Fixed Trace and large τ

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $Tr(M_D M_D^{\dagger}) = 1.26 GeV^2$. Dashed line represents the age of the universe.

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $Tr(M_D M_D^{\dagger}) = 500 \, GeV^2$. Dashed lines represents the age of the universe.

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $Tr(M_D M_D^{\dagger}) = 1400 \, GeV^2$. Dashed line represents the age of the universe.

- \blacksquare Smallest τ can also be associated to higher mass values
- Broader mass spectrum independent of the trace value!
- Curves are smoother than in the fixed VEV scenario.

Heat Maps: Fixed VEV and short τ

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=50GeV. Dashed lines represent $\tau \leq 1s$

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=300GeV. Dashed lines represent $\tau \leq 1s$

Heat Maps: Fixed VEV and short τ

Figure: Majoron lifetime (in log scale) as a function of the mass and the trace for f=1TeV. Dashed lines represent $\tau < 1s$

Increasing the VEV changes the range of mass values [0.5, 7] GeV to [7, 19] Gev

Phenomenological Analysis 00000000000000000

- Gap size inscreases with the mass in agreement with the structure of the Γ.
- Highest τ value also increases with the VEV.

Heat Maps:Fixed Trace and short τ

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $(M_D M_D^{\dagger}) = 1.26 \, GeV^2$. Dashed lines represent $\tau \leq 1s$

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $(M_D M_D^{\dagger}) = 500 \, GeV^2$. Dashed lines represent $\tau \leq 1s$

Figure: Majoron lifetime (in log scale) as a function of the mass and the vev for $(M_D M_D^{\dagger}) = 1400 \, GeV^2$. Dashed lines represent $au \leq 1s$

- Broader mass spectrum independent of the trace value! Just like for high au values
- Which couple of variables can give us better control on the parameter space? \rightarrow Correlations are needed!

The Type 1 Seesaw Mechanism

	$Tr(M_D M_D^{\dagger})$	f	M _J
$Tr(M_D M_D^{\dagger})$	1.000000e+00	2.373564e-15	-4.344185e-16
f	2.373564e-15	1.000000e+00	4.822399e-18
M_J	-4.344185e-16	4.822399e-18	1.000000e+00

■ The most independent variables to perform this study are f and $M_I! \rightarrow \text{Fix the trace}$

Conclusions

- Majoron is not expected to be found at collider experiments as the cross sections are too small.
- We have performed a premilinar study that gives us some mass values to scan the parameter space moving in regions that are still unconstrained.
- A set of independent variables to perform the scan has been found.
- Obtained $J \rightarrow \gamma \gamma$ coupling and mass values in the case of high τ could allow us to scan inside Mu3e sensitivity region.
- Higher mass values allow us to scan the rest of the parameter space.
- This study is a work in progress.