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The Type 1 Seesaw Mechanism
®0

m One can explain the small neutrino masses by introducing 3
Majorana neutrinos with mass term

1
—LD EDEMMVR + h.c (].)
m Lepton number violation can be used to explained baryon

assymetry in the universe through leptogenesis. Can be
promoted to a symmetry that gets broken at a certain scale

m General mass Lagrangian considers both Dirac and Majorana
masses

1
—LD EﬁfMNVR + h.c; vr=(V[,VvR) (2)
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The Type 1 Seesaw Mechanism
oe

m Mass matrix is non diagonal

(0 Mp
= (g i) ©)
Weak eigenstates# mass eigenstates

m If My; >> Mp the diagonal mass matrix becomes

M, 0
[
MN - < 0 _MMlMZ)—MD> (4)
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Generating Neutrino Masses: The Majoron
©00

m Type 1 Seesaw explains why measured mass values are so
small. However, L gets broken by two units and My, is put by
hand.

m One can then promote L, or B-L, to an approximate global
symmetry that becomes spontaneously broken at the Seesaw
scale.

m Introduce scalar singlet ¢ with potential

V(o) = mete + 2P V(oe) ()
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Generating Neutrino Masses: The Majoron
0e0

m Hence, one can generate Majorana masses through Yukawa
couplings

1 S
—L D Syyppvg + hee (6)
m It is possible to parametrize ¢ around the new VEV as (Kibble
parametrization)
1
T2

m Goldstone theorem — J gets massive. Referred to as the
Majoron.

(F+A+iJ) (7)

m If Seesaw scale = Peccei-Quinn scale, Majoron = Axion.
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Generating Neutrino Masses: The Majoron
ooe

m After SSB, Majorana mass terms are obtained as well as
Neutrino-Majoron interactions

1 1 Y

) (MM),J_CIV/ + \@y,JVL AVl + 2\/§yUVL I,

(8)
m Rewrite Neutrino-J couplings in terms of the masses
im
L, =
! 2f

In terms of the three massive neutrino eigenstates

;_:JZ/R—I- h.c (9)

(10)
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Phenomenological Analysis
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m Majoron production at the LHC has not been largely studied.

m Three fundamental production mechanisms were studied.
First one: W mediated production of a Majoron.

Figure: W mediated production of a J (W Channel)
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Phenomenological Analysis
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m The second production mechanism emulates the signal from
the OvBf3 decay, and is obtained through indirect Vector
Boson Fusion (VBF) processes

7
a1 q

W

a2 ‘l;

Figure: J production via VBF
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Phenomenological Analysis
00@0000000000000

m Third production mechanism — Drell-Yan

Figure: J production via DY process
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Phenomenological Analysis
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Cross saction vs N mass.

000008

000006

m Cross sections are too small
for the process to be
observed at the LHC

m This part of the work was
carried with non decaying J

oot

000004

000002

000000

m Lower energy experiments
can be a better probe to the

Figure: Behavior of the three parameter space

different production cross sections as

a function of N3 mass for
f =300GeV and m; = 100GeV.
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Phenomenological Analysis
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m Current focus: 2 loop couplings to photons

J 2 J-- r
¥ ”j ‘///

Figure: Example of 2 loop coupling to vector bosons

m Coupling at two loops is given by
a 2 2
g,w:m{Tr(MDM )z:/\/foT3 ( )+Z Mp M}, )uh( )}
4 m;
(11)

m Partial decay width is given by

|gw| m_]

641 (12)

rJ—)=
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Phenomenological Analysis
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Limits on the trace values
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Phenomenological Analysis
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m Three free parameters Tr(l\/lDI\/ITD), My, f

m Two scenarios were considered to calculate the lifetime of the
Majoron, namely large (7 > 1 x 10'7s) and short (7 < 1s)
values . These calculations were performed by fixing one of
the free parameters and allowing the other two to run in a
certain range. — Heat maps were made.
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Phenomenological Analysis
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Heat Maps: Fixed VEV and large 7
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Figure: Majoron lifetime (in log Figure: Majoron lifetime (in log
scale) as a function of the mass and scale) as a function of the mass and
the trace for f=50GeV. Dashed line the trace for f=300GeV. Dashed line
represent the age of the universe represents the age of the universe
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Phenomenological Analysis

0O0000000e0000000

Heat Maps: Fixed VEV and large 7
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Figure: Majoron lifetime (in log scale) as a

function of the mass and the trace for

f=1TeV. Dashed lines represent the age of

the universe. 16 /24



Heat Maps:Fixed Trace

Phenomenological Analysis
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Tr(MpMg)=1.26GeV?
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Figure: Majoron lifetime (in log
scale) as a function of the mass and

the vev for Tr(MDME)) =1.26GeV?2.

Dashed line represents the age of
the universe.
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Figure: Majoron lifetime (in log
scale) as a function of the mass and
the vev for Tr(/\/IDME) =500GeV?.
Dashed lines represents the age of

the universe.
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Phenomenological Analysis
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Tr(MpMJ)=1400GeV?
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Figure: Majoron lifetime (in log scale) as a
function of the mass and the vev for
Tr(MpM})) = 1400GeV?. Dashed line
represents the age of the universe.

m Smallest 7 can also be
associated to higher
mass values

m Broader mass spectrum
independent of the
trace value!

m Curves are smoother
than in the fixed VEV

scenario.
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Phenomenological Analysis
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Heat Maps: Fixed VEV and short 7
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Figure: Majoron lifetime (in log Figure: Majoron lifetime (in log
scale) as a function of the mass and scale) as a function of the mass and
the trace for f=50GeV. Dashed lines the trace for f=300GeV. Dashed
represent 7 < 1s lines represent 7 < 1s
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Phenomenological Analysis
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Heat Maps: Fixed VEV and short 7
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Figure: Majoron lifetime (in log scale) as a increases with the VEV.

function of the mass and the trace for
f=1TeV. Dashed lines represent 7 < 1s
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Phenomenological Analysis
0000000000000 e00

Heat Maps:Fixed Trace and short 7
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Figure: Majoron lifetime (in log Figure: Majoron lifetime (in log
scale) as a function of the mass and scale) as a function of the mass and
the vev for (/\/IDME) = 1.26GeV?2. the vev for (MD/\/IZ)) = 500GeV2.
Dashed lines represent 7 < 1s Dashed lines represent 7 < 1s
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Phenomenological Analysis
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m Broader mass spectrum
independent of the
trace value! Just like
for high 7 values

600

f(GeV)
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m Which couple of
variables can give us
15 better control on the
miee parameter space? —

. . I . rrelations are n !
Figure: Majoron lifetime (in log scale) as a Correlations are needed

function of the mass and the vev for
(MDI\/ILT)) = 1400GeV2. Dashed lines
represent 7 < 1s
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Phenomenological Analysis
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Correlations

| | Tr(MoM}) | f M,
Tr(MpMyL) | 1.000000e+00 | 2.373564e-15 | -4.344185¢-16
f 2.373564e-15 | 1.000000e+-00 4.822399e-18
M, -4.344185e-16 4.822399e-18 | 1.000000e+00

m The most independent variables to perform this study are f
and M,! — Fix the trace

23/24



Conclusions
°

Conclusions

m Majoron is not expected to be found at collider experiments
as the cross sections are too small.

m We have performed a premilinar study that gives us some
mass values to scan the parameter space moving in regions
that are still unconstrained.

m A set of independent variables to perform the scan has been
found.

m Obtained J — 7y coupling and mass values in the case of
high 7 could allow us to scan inside Mu3e sensitivity region.

m Higher mass values allow us to scan the rest of the parameter
space.

m This study is a work in progress.
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