Study of $B_s^0 \to \phi \phi \phi$ via charmonium resonances IJCLAB internship

Catalina Moreno Sarria

December 1, 2022

Table of Contents

 \bigcirc B_s^0 decays into ϕ mesons

Multidimensional Fits

Table of Contents

 \bigcirc B_s^0 decays into ϕ mesons

Multidimensional Fits

3/13

The $B_s^0 \to \phi \phi \phi$ decay

The transition $B_s^0 \to \phi \phi \phi$, receive contributions from the three body decay and from the two body decay with a charmonium intermediate states.

Diagram for the $B_s^0 \to \phi \phi \phi$ decay.

Diagram for the $B_s^0 \to \eta_c \phi(\eta_c \to \phi \phi)$ decay.

 $B_s^0 \to \phi \phi \phi$

The $B_s^0 \to \phi \phi \phi$ decay

The transition $B_s^0 \to \phi \phi \phi$, receive contributions from the three body decay and from the two body decay with a charmonium intermediate states.

Diagram for the $B_s^0 \to \phi \phi \phi$ decay.

Diagram for the ${\cal B}^0_s \to \eta_c \phi(\eta_c \to \phi\phi)$ decay.

 $B_s^0 \to \phi \phi \phi$

Table of Contents

 \bigcirc B_s^0 decays into ϕ mesons

Multidimensional Fits

True ϕ mesons reconstruction

Separate the signal of three true ϕ mesons from permutations of K^+K^- using:

- Convolution of a Gaussian and a Briet Wigner for the ϕ signal.
- A first order polynomial for the K⁺K⁻ background.
- A 3D fit over the permutations.

Distribution for ϕ mesons signal, with $\mu=1019.461(16)\,\mathrm{MeV},$ $\sigma=1\,\mathrm{MeV}$ and $\Gamma=4.249(13)\,\mathrm{MeV}.$

True B_s^0 mesons reconstruction

B_s^0 reconstruction with:

- ullet A Gaussian distribution centered at the mass of B_s^0 for the signal.
- A constant background.

 B_s^0 mass histogram.

A 3D fit in each bin.

Fit result

- $N_S = 321.3 \pm 49.3$ Events
- Background consistent to zero.

Symmetrized plots

For the analysis, the symmetrized Dalitz plot was considered.

$$X = 3\frac{(T_1 - T_2)}{Q}$$

$$T_{1,2,3} = \text{Kinetic energies}$$

$$Y = 3\frac{T_3}{Q} - 1 \tag{1}$$

$$Q = m_{B_c} - 3m_{\phi} \tag{2}$$

Conventional Dalitz plot.

Symmetrized Dalitz plot.

Resonance signal

Extract the signal from decays with resonances.

MonteCarlo simulation for Charmonia resonances resonances in a Dalitz plot.

Dalitz plot of the data.

1

¹At first sight there is no contribution of the resonances in the data → ⟨ ■ → | ■ → ∞ 0

Dalitz plot after bin fits

Dalitz plot after bin fits.

Just as in the B_s^0 histogram, a fit of the three ϕ mesons and also a fit on the B_s^0 signal were applied to each bin in the symmetrized Dalitz plot.

 $B_{\rm s}^0 o \phi \phi \phi$ December 1, 2022 12 / 13

Summary

- We reconstructed the $B^0_s o \phi \phi \phi$ decay with the LHCb data.
- ② We reduced the combinatorial background with bin fits reconstructing true ϕ mesons.
- Next step is to fit the Dalitz plot to reconstruct the the resonances.