Dune and Liquid Argon Software (LArSoft) an overview

Deywis Moreno

José David Támara Jaramillo (Speaker)

7th ComHEP: Colombian Meeting on High Energy Physics

November 29th

Villa de Leyva Boyacá, Colombia

Content

- What a is Neutrino?
- What is DUNE?
- **TPC Primary Characteristics**
- What is LarSoft?
- How the Photon Detection System Works?
- **DAPHNE**
- Photon Detection System Simulation Examples
- **Summary**

What is a Neutrino?

Neutrinos

What is DUNE?

A 70-kton liquid argon TPC distributed in four modules with all the instrumentation *to see* neutrinos

DUNE Scientific Goals

Neutrino Oscillations

- CP violation in the neutrino sector
- Neutrino mass hierarchy
- Precision oscillation measurements
- Testing 3v paradigm

Proton Decay

- Predicted by BSM theories, but not yet seen
- Unique sensitivity to $p \rightarrow \bar{\nu}K +$

Supernova neutrinos

 Neutrino burst from galactic corecollapse supernova

Far Detector module I: LArTPC plus Photon Detector System (PDS)

Two APAs linked together to form one unit of an APA wall[1].

TPC Primary Characteristics

Liquid-Argon Time-Projection Chamber (LArTPC)

- Charged particles produced in neutrino interactions deposit ionisation trails in liquid argon.
- Ionisation electrons drift in an applied electric field.
- In a single-phase LArTPC, the electrons are detected by a series of wire planes and the photons are detected by the photon detector.

Figure from arXiv:1612.05824

What is LarSoft?

"A toolkit to facilitate simulation, reconstruction and analysis of events from liquid-argon TPC-based detectors". LarSoft Tutorial CERN.

experiments build on top of LArSoft their specific toolkits it is interfaced and uses: external MC physics simulation toolkits LarSoft Other I ArTPC experiments share their reconstruction toolkits generic tools using LArSoft It is based on art (event-processing framework for particle physics experiments)

R. Sulej, LArSoft Tutorial at CERN, 31.10.2016

LarSoft Structure

LarSoft Structure

Reconstruction Steps

Raw data, sim or real detector

Deconvolution

Hit finding and 3D imaging

2D hits/3D cells

- Pattern recognition
- Trajectory fit
- Vertex finding
- EM showers
- Hierarchy recognition

Full real event, ready for PID and kinematics

R. Sulej, LArSoft Tutorial at CERN, 31.10.2016

Pandora and LarSoft

Pandora is a multialgorithm pattern recognition framework that operates externally to LarSoft but with direct modules and algorithms in LarSoft

Takes Hit collections as input, and performs

- 2D cluster finding (track-like and shower-like)
- 3D matching
- shower/track discrimination
- vertex finding and classification

Produces PFParticles

- Mother-daughter hierarchy for all particles from a single event vertex
- Distinguish tracks, delta rays, showers, vertices

How the PDS Works

Schematic of scintillation light production in argon [1].

ARAPUCA cell configuration based on [2]

DAPHNE

DAPHNE GENERAL BLOCK DIAGRAM

- Detector electronics for Acquiring PHotons from Neutrinos
- **PDS** warm electronics

Slow Control, Timing and Data Interfaces specified by: https://edms.cern.ch/ui/file/2088726/2/2088726_DID_DAQSC_PDS_V2_docx_cpdf.pdf

Cold-Warm Electronics interface specification: https://edms.cern.ch/ui/file/2342785/1/Cold_Warm_PDS_Interface_4_27_2020.pdf (connector definition to be updated)

DAPHNE-ColdElec interface connector: 5 D-SUB connectors, 30 pins (dual 15 pins), 8 channels/1 AFE each one (currently under analysis), 3 options to connect to the chassis (where the Hirose connectors are located)

Power supply connector: D-SUB, required a locked connector, redundancy, return, remote sensing features

DAPHNE and ProtoDUNE - II

Goals:

- Full characterization of "Module 0"s for DUNE Far Detector: improved APAs, HV system components, cold electronics, photon detectors, DAQ.
- Increase beam data statistics (cross section measurements, particle identification, calibration, reconstruction)
- Complete data sets with negative polarity for electrons, muons, pions, kaons in momentum range 0.3-7 GeV, with special attention to lower momenta
- Develop, implement, and demonstrate new calibration techniques, non implemented in ProtoDUNE Phase 1, including a laser calibration system and a pulsed neutron source

DAPHNE

SPE Template (Cold Amplifier-> input DAPHNE)

Pulse Length	6 μs
Max Amplitude	3.5 mV
Rise Time	~100 ns
Fall Time	~1 <i>µs</i>

Photon Detection System Simulation Examples

Photon Detection System Simulation Examples

Summary

- ☐ DUNE will enable high-precision neutrino measurements, encompassing:
- CP violation measurement and neutrino mass ordering determination, studies of neutrinos from a galactic supernova burst, and potentially solar neutrinos and many BSM searches, including sterile neutrinos, baryon number violation, non-standard interactions.
- ☐ Related to DAPHNE Integration into the DAQ system is progressing in different labs in CERN.
- ☐ LarSoft will provided the simulations results to find the time distribution and number of photons per channel, also will help to know what is the appropriate length of the waveform.
- ☐ The following year combing tools as LarSoft and ROOT will be integrated in the data analysis of the experimental results from the different experiments with DAPHNE.

References

- [1] Deep Underground Neutrino Experiment (DUNE) 1 DRAFT Update to Technical Design Report 2 Technical Design Report, The DUNE collaboration, November 7, 2022
- [2] Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC. The DUNE collaboration
- LArSoft web page: https://larsoft.org
- LArSoft dOxygen documentation system: https://nusoft.fnal.gov/larsoft/doxsvn/html/index.html
- LArSoft wiki: https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki

