Physical constraints for wormholes existence in the frame of the general theory of relativity

Julian Cortez

November 30, 2022

[†] Facultad de Ciencias Universidad Pedagógica y Tecnológica de Colombia

WORMHOLES AND ENERGY CONDITIONS

Figure 1: Wormhole scheme

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}.$$

Energy conditions

- WEC: $T_{\mu\nu}t^{\mu}t^{\nu} \geq 0. \Leftrightarrow \rho > 0$
- · DEC:

 $T_{\mu\nu}t^{\mu}t^{\nu}\geq 0$ and $T_{\mu\nu}t^{\nu}$ it's not spacelike

 $\rightarrow \rho > 0$ (locally), energy flux is timelike or null.

1

EINSTEIN-ROSEN BRIDGE

Figure 2: Kruskal diagram illustrating the wormhole connecting regions I and IV.

- It does not violate energy conditions: solution in empty spacetime.
- not traversable wormhole solution.

SOLUCIÓN DE VISSER

Figure 3: Surface stress-energy at the junction

- Two connected Schwarzschild manifolds without event horizon.
- Einstein equations in terms of surface stress-energy $S^{\mu\nu}$ and extrinsic curvature κ^i_j

$$S^{i}_{j} = -\frac{1}{8\pi G} \left[\kappa^{i}_{j} - \delta^{i}_{j} \kappa^{k}_{k}\right]. \quad (1)$$

surface energy density turns out to be negative!!!

$$\sigma = -\frac{1}{2\pi a} \cdot \sqrt{1 - \frac{2MG}{a}} \qquad (2$$

ANALYSIS AND CONCLUSION

- Since surface energy density is negative, the solution violates WEC and DEC.
- It is concluded that Visser's solution is not physically possible in the frame of general relativity.

REFERENCES

- [1] Amalkumar Raychaudhuri. "Relativistic cosmology. I". En: Physical Review 98.4 (1955), pag. 1123.
- [2] Michael S Morris y Kip S Thorne. "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". in: American Journal of Physics 56.5 (1988), pags. 395-412.
- [3] Catalina-Ana Miritescu. "Traversable Wormhole Constructions". masters thesis. Imperial CollegeLondon, 2020.
- [4] Matt Visser. "Traversable wormholes from surgically modified Schwarzschild spacetimes". in: Nuclear Physics B 328.1 (1989), pags. 203-212.