The importance of characterizing charged pions in neutrino interactions

Juan David Villamil
Co-author: Camilo Cortés
Supervisors:
Enrique Arrieta (UniMagdalena)
Carlos Sandoval (UNAL)

29/11/2022 7th ComHEP: Colombian Meeting on High Energy Physics

Charged Current (CC) Pion Process, Why is this relevant?

[1]: NOvA Event Display
Zoom In

$$
v_{l}+A \rightarrow l^{-}+\pi^{+}+A
$$

$$
\overline{v_{l}}+A \rightarrow l^{+}+\pi^{-}+A
$$

How to identify CC pion events?

Two Pions

$\sqrt{4}$

$\stackrel{y}{1}$
Three Pions Muon and electron track

\downarrow

Messy Track Three Pions

How to identify CC pion events?

[3]: NOvA Event Display
\Longrightarrow Zoom In

[4]: MINERvA Collaboration

Current status

[4]: MINERvA Collaboration

Tests by MINERvA and MINOS report an average efficiency between models and experimental data arround 42% and 60%

Problems

- Discrepancies between models and data.
- Understanding the scattering.
- Need for more accurate models.
- Improvements on the identification algorithms.
- Enhanced theoretical models and simulations

Conclusions

 are required.- Although it has been shown that CC pion problems have greater effect on large nucleus experiments, it is very useful to expand these analyses to experiments such as NOvA

Thanks

References

1. Progress of the Charged Pion Semi-Inclusive Neutrino Charged Current Cross Section in NOvA,, Aristeidis Tsaris. (Event Display Image Slide 1)
2. NOvA Event Identification Tutorial, Californian Institute of Technology. (Event Processes Slide 2)
3. CONSTRAINTS ON NEUTRINO OSCILLATION PARAMETERS FROM NEUTRINOS AND ANTINEUTRINOS WITH MACHINE LEARNING, Micah Groh. (Event Display Slide 3)
4. Charged pion production in $\nu \mu$ interactions on hydrocarbon at hEvi=4.0 GeV. MINERvA Collaboration (Michel Electron Energy Distribution Slide 3, and Pion Range Score Slide 4)

Back-up Slides

$$
\begin{gathered}
\pi \rightarrow \mu \rightarrow e \\
\mu \rightarrow e+\nu_{e}+\nu_{\mu}
\end{gathered}
$$

