Chern-Simons on the Null Plane

German Enrique Ramos Zambrano - B. M. Pimentel
Departamento de Física - Universidad de Nariño
IFT - UNESP

Abelian Chern-Simons Theory

The abelian Chern-Simons theory is describe by the following Lagrangian density:

$$
\begin{equation*}
\mathcal{L}_{C S}=\frac{\kappa}{4} \varepsilon^{\mu \nu \alpha} F_{\mu \nu} A_{\alpha}, \tag{1}
\end{equation*}
$$

where $F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$. The Lagrangian above is invariant by the following transformations,
$A_{\mu}(x) \rightarrow A_{\mu}(x)+\partial_{\mu} \Lambda(x) \quad, \quad \mathcal{L}_{C S} \rightarrow \mathcal{L}_{C S}+\partial_{\alpha}\left(\frac{\kappa}{4 e} \varepsilon^{\mu \nu \alpha} F_{\mu \nu} \Omega\right)$.
The field equations are:

$$
\begin{equation*}
\frac{\kappa}{2} \varepsilon^{\rho \sigma \alpha} F_{\sigma \alpha}=0, \tag{3}
\end{equation*}
$$

The null plane time x^{+}and longitudinal coordinate x^{-}are defined, respectively, as

$$
\begin{equation*}
x^{+} \equiv \frac{x^{0}+x^{3}}{\sqrt{2}} \quad x^{-} \equiv \frac{x^{0}-x^{3}}{\sqrt{2}} \tag{4}
\end{equation*}
$$

with the transverse coordinate kept unchanged. In the null-plane coordinates the metric is given by,

$$
\eta_{\mu \nu}=\left(\begin{array}{ccc}
0 & 0 & 1 \tag{5}\\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Explicitly, $x^{+}=x_{-}$and the derivatives with respect to x^{+}and x^{-} are defined as: $\partial_{+} \equiv \frac{\partial}{\partial x^{+}}$and $\partial_{-} \equiv \frac{\partial}{\partial x^{-}}$, with $\partial^{+}=\partial_{-}$. The Levi-Civita tensor has the following components,

$$
\begin{equation*}
\varepsilon^{+-1}=\varepsilon_{+-1}=1 \tag{6}
\end{equation*}
$$

Dirac Formulation

From (1) it is easy to write the first-order Lagrangian by introducing the momentum π^{μ} with respect to the fields A_{μ},

$$
\begin{equation*}
\pi^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{+} A_{\mu}\right)}=\frac{\kappa}{2} \varepsilon^{+\rho \alpha} A_{\alpha} . \tag{7}
\end{equation*}
$$

The theory has the following set of primary constraints:

$$
\begin{equation*}
\Omega_{1} \equiv \pi^{+} \approx 0 \quad, \quad \Omega_{2, a} \equiv \pi^{a}-\frac{\kappa}{2} \varepsilon_{a b} A_{b} \approx 0, \quad a=-, 1, \tag{8}
\end{equation*}
$$

where we have defined the following antisymmetric tensor,

$$
\begin{equation*}
\varepsilon_{-1}=-\varepsilon_{1-}=1 \tag{9}
\end{equation*}
$$

The canonical Hamiltonian density is defined by,

$$
\begin{equation*}
\mathcal{H}_{C}=\pi^{\mu} \partial_{+} A_{\mu}-\mathcal{L}=-\kappa A_{+} \varepsilon_{a b} \partial_{a} A_{b} \tag{10}
\end{equation*}
$$

The canonical Hamiltonian take the form,

$$
\begin{equation*}
H_{C}=-\kappa \int d^{2} x A_{+} \varepsilon_{a b} \partial_{a} A_{b} \tag{11}
\end{equation*}
$$

where $d^{2} x \equiv d x^{-} d x^{1}$. Thus, the dynamics is determined by the primary Hamiltonian defined by,

$$
\begin{equation*}
H_{P}=H_{C}+\int d^{2} y\left[u^{1}(y) \Omega_{1}(y)+u^{2, a}(y) \Omega_{2, a}(y)\right] \tag{12}
\end{equation*}
$$

The fundamental Poisson brackets of the theory are,

$$
\begin{equation*}
\left\{A_{\mu}(x), \pi^{\nu}(y)\right\}=\delta_{\mu}^{\nu} \delta^{2}(x-y) \tag{13}
\end{equation*}
$$

The consistence conditions on the constraints are,

$$
\dot{\Omega}_{1}(x)=\left\{\Omega_{1}(x), H_{P}\right\}=\kappa \varepsilon_{a b} \partial_{a} A_{b} \approx 0
$$

Then, a secondary constraint arise defined by,

$$
\begin{equation*}
\Omega_{4} \equiv \varepsilon_{a b} \partial_{a} A_{b} \approx 0 \tag{14}
\end{equation*}
$$

The consistence of Ω_{4} determine,

$$
\begin{equation*}
\dot{\Omega}_{4}(x)=\left\{\Omega_{4}(x), H_{P}\right\}=\varepsilon_{a b} \partial_{a} u^{2, b} \approx 0 \tag{15}
\end{equation*}
$$

thus, no more constraints are generated from Ω_{4}.
The consistence condition of $\Omega_{2, a}$ determine,

$$
\begin{equation*}
\dot{\Omega}_{2, a}(x)=\left\{\Omega_{2, a}(x), H_{P}\right\}=u^{2, a}-\varepsilon_{a b} \partial_{b} A_{+} \approx 0 \tag{16}
\end{equation*}
$$

This relations is consistente with (18).

The theory is characterized by the following set of constraints,

$$
\begin{align*}
\Omega_{1} & \equiv \pi^{+} \approx 0 \\
\Omega_{2, a} & \equiv \pi^{a}-\frac{\kappa}{2} \varepsilon_{a b} A_{b} \approx 0 \tag{17}\\
\Omega_{4} & \equiv \varepsilon_{a b} \partial_{a} A_{b} \approx 0
\end{align*}
$$

The theory has the following set of first class constraints.

$$
\begin{equation*}
\Theta_{1} \equiv \pi^{+} \approx 0 \quad, \quad \Theta_{2} \equiv \partial_{a} \pi^{a}+\frac{\kappa}{2} \varepsilon_{a b} \partial_{a} A_{b} \approx 0 \tag{18}
\end{equation*}
$$

and a set os second class constraints,

$$
\begin{equation*}
\Phi_{a} \equiv \pi^{a}-\frac{\kappa}{2} \varepsilon_{a b} A_{b} \approx 0, \quad a=-, 1, \tag{19}
\end{equation*}
$$

where,

$$
\begin{equation*}
\left\{\Phi_{a}(x), \Phi_{b}(y)\right\}=-\kappa \varepsilon_{a b} \delta^{2}(x-y) \tag{20}
\end{equation*}
$$

We are going to eliminate Φ_{a} using the following Dirac Brackets between two dynamical variables,

$$
\begin{gather*}
\left\{A_{m}(x), B_{n}(y)\right\}_{D 1}=\left\{A_{m}(x), B_{n}(y)\right\}-\int d^{2} u d^{2} v\left\{A_{m}(x), \Phi_{a}(u)\right\} \\
C_{a b}^{-1}(u, v)\left\{\Phi_{b}(v), B_{n}(y)\right\}, \tag{21}
\end{gather*}
$$

where $C_{a b}^{-1}$ is the inverse of the second class constraint matrix defined by,

$$
\begin{equation*}
C_{a b}(u, v) \equiv\left\{\Phi_{a}(x), \Phi_{b}(y)\right\}=-\kappa \varepsilon_{a b} \delta^{2}(x-y) \tag{22}
\end{equation*}
$$

where $C_{a b}^{-1}$ is determined by,

$$
\begin{equation*}
\int d^{2} z C_{a c}(x, z) C_{c b}^{-1}(z, y)=\delta_{a b} \delta^{2}(x-y) \tag{23}
\end{equation*}
$$

It is possible to show,

$$
\begin{equation*}
C_{a b}^{-1}(x, y)=\frac{1}{\kappa} \varepsilon_{a b} \delta^{2}(x-y) \tag{24}
\end{equation*}
$$

Under this DB, the constraint Φ_{a} is a strong identity, thus, we can assume,

$$
\begin{equation*}
\pi^{a}=\frac{\kappa}{2} \varepsilon_{a b} A_{b} \tag{25}
\end{equation*}
$$

then A_{b} are the freedom degree. Thus, it is possible determine:

$$
\begin{equation*}
\left\{A_{a}(x), A_{b}(y)\right\}_{D 1}=\frac{1}{\kappa} \varepsilon_{a b} \delta^{2}(x-y) \tag{26}
\end{equation*}
$$

The first class constraints can be written,

$$
\begin{equation*}
\Theta_{1}=\pi^{+} \approx 0 \quad, \quad \Theta_{2}=\kappa \varepsilon_{a b} \partial_{a} A_{b} \tag{27}
\end{equation*}
$$

To eliminate the first class constraints it is necessary to introduce two gauge condition,

$$
\begin{equation*}
\Theta_{3}=A_{+} \approx 0 \quad, \quad \Theta_{4}=A_{-} \approx 0 \tag{28}
\end{equation*}
$$

and define a matrix with the following elements,

$$
\begin{equation*}
D_{a b}(x, y) \equiv\left\{\Theta_{a}(x), \Theta_{b}(y)\right\}_{D 1} . \quad a=1,2,3,4 \tag{29}
\end{equation*}
$$

Now, we can define the final set of DB of the theory for two dynamical variables,

$$
\begin{gathered}
\left\{A_{m}(x), B_{n}(y)\right\}_{D}=\left\{A_{m}(x), B_{n}(y)\right\}_{D 1}-\int d^{2} u d^{2} v \\
\left\{A_{m}(x), \Theta_{a}(u)\right\}_{D 1} D_{a b}^{-1}(u, v)\left\{\Theta_{b}(v), B_{n}(y)\right\}_{D 1}
\end{gathered}
$$

where

$$
D^{-1}(z, y) \equiv\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{31}\\
0 & 0 & 0 & -\frac{1}{\partial_{-}^{x}} \\
-1 & 0 & 0 & 0 \\
0 & -\frac{1}{\partial_{-}^{x}} & 0 & 0
\end{array}\right) \delta^{2}(x-y)
$$

It is possible to show

$$
\begin{equation*}
\left\{A_{1}(x), A_{1}(y)\right\}_{D}=\frac{1}{\kappa} \frac{\partial_{1}^{x}}{\partial_{-}^{x}} \delta^{2}(x-y) . \tag{32}
\end{equation*}
$$

Conclusions

- We have calculated the complete set of constraints of the theory.
- The constraints have been classified and it was shown that one of the first class constraints result of a combination of constraints.
- The inverse of the second class constraint matrices have been uniquely derived.
\square The degrees of freedom have been determined and their corresponding DB calculated.

