Addressing the B meson anomalies within the minimal U_1 leptoquark model

Néstor Quintero

Universidad Santiago de Cali Cali - Colombia

Based on:

J. M. Cabarcas, C. H. García-Duque, J. H. Muñoz, NQ and E. Rojas arXiv: 2209.04753

7th Colombian Meeting on High Energy Physics Nov 28 - Dic 2, 2022

OUTLINE

- Introduction/Motivation
 - Test of LFU in $b \to c au \bar{
 u}_{ au}$ decays

 - Test of LFU in $b \to s \mu^+ \mu^-$ decays
 - NP interpretations
- $oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}}}$
 - Phenomenological analysis
 - Parametric space of minimal U_1 model
 - Addressing the $a_{\mu}=(g-2)_{\mu}$ anomaly
- Conclusions

Test of LFU in $b \to c \tau \bar{\nu}_{\tau}$ decays

Recent tests of lepton flavor universality (LFU) in B meson decays ($b \to c \tau \bar{\nu}_{\tau}$), performed by the BABAR, Belle and LHCb experiments, have shown consistent deviations from the SM predictions.

$$R(D^{(*)}) = \frac{BR(B \to D^{(*)} \tau \bar{\nu}_{\tau})}{BR(B \to D^{(*)} \ell' \bar{\nu}_{\ell'})}, \ (\ell' = e \text{ or } \mu).$$

Observable	Measurement	Experiment	SM prediction	Tension
R(D)	$0.307 \pm 0.037 \pm 0.016$	Belle-2019	$\textbf{0.298} \pm \textbf{0.004}$	0.2σ
	$0.340 \pm 0.027 \pm 0.013$	HFLAV-2019		1.4σ
	$0.441 \pm 0.060 \pm 0.066$	LHCb-2022		1.9σ
	$0.358 \pm 0.025 \pm 0.012$	HFLAV-2022		2.2σ
$R(D^*)$	$0.283 \pm 0.018 \pm 0.014$	Belle-2019	$\textbf{0.254} \pm \textbf{0.005}$	1.1σ
	$0.295 \pm 0.011 \pm 0.008$	HFLAV-2019		2.5σ
	$0.281 \pm 0.018 \pm 0.024$	LHCb-2022		1.9σ
	$0.285 \pm 0.010 \pm 0.008$	HFLAV-2022		2.3σ

Experimental status on observables related to the charged transition $b \to c \tau \bar{\nu}_{\tau}$.

R(D) and $R(D^*)$ anomalies!

3/19

Test of LFU in semileptonic B meson decays

Heavy Flavor Averaging Group (HFLAV) - 2022

Test of LFU in semileptonic B meson decays

In addition, the LHCb reported a measurement on $R(J/\psi)=\mathrm{BR}(B_c\to J/\psi\tau\bar{\nu}_\tau)/\mathrm{BR}(B_c\to J/\psi\mu\bar{\nu}_\mu)$, and the polarization observables τ lepton polarization $P_\tau(D^*)$ and. D^* longitudinal polarization $F_L(D^*)$ have been observed by the Belle experiment.

Observable	Measurement	Experiment SM prediction		Tension
R(D)	$0.307 \pm 0.037 \pm 0.016$	Belle-2019	elle-2019 0.299 ± 0.003	
	$0.340 \pm 0.027 \pm 0.013$	HFLAV-2019		1.4σ
$R(D^*)$	$0.283 \pm 0.018 \pm 0.014$	Belle-2019	0.258 ± 0.005	1.1σ
	$0.295 \pm 0.011 \pm 0.008$	HFLAV-2019		2.5σ
$R(J/\psi)$	$0.71 \pm 0.17 \pm 0.18$	LHCb-2018	0.283 ± 0.048	2.0σ
$P_{\tau}(D^*)$	$-0.38 \pm 0.51^{+0.21}_{-0.16}$	Belle-2018	-0.497 ± 0.013	0.2σ
$F_L(D^*)$	$0.60 \pm 0.08 \pm 0.035$	Belle-2019	0.46 ± 0.04	1.6σ
$R(X_c)$	0.223 ± 0.030	PDG	0.216 ± 0.003	0.2σ
$R(\Lambda_c)$	$\textbf{0.242} \pm \textbf{0.076}$	LHCb-2022	0.324 ± 0.004	1.8σ
$B_c^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$	< 10 %		$(2.16 \pm 0.16) \%$	

Experimental status on observables related to the charged transition $b \to c au \bar{\nu}_{ au}$.

charged-current $b o c au ar{
u}_{ au}$ anomalies!

Test of LFU in leptonic Υ meson decays

• LFU can also be tested through the ratio of leptonic decays of bottomonium meson $\Upsilon(nS)$ [Aloni, Efrati, Grossman, & Nir, 1702.07356].

$$R_{\Upsilon(nS)} \equiv \frac{\mathrm{BR}(\Upsilon(nS) \to \tau^+ \tau^-)}{\mathrm{BR}(\Upsilon(nS) \to \ell^+ \ell^-)}, \quad (n = 1, 2, 3)$$

Observable	Measurement	Experiment SM prediction		Tension
$R_{\Upsilon(1S)}$	$1.005 \pm 0.013 \pm 0.022$	BABAR-2010 0.9924 $\pm \mathcal{O}(10^{-5})$		0.5σ
$R_{\Upsilon(2S)}$	$1.04 \pm 0.04 \pm 0.05$	CLEO-2007	$0.9940 \pm \mathcal{O}(10^{-5})$	0.8σ
$R_{\Upsilon(3S)}$	$1.05 \pm 0.08 \pm 0.05$	CLEO-2007	$0.9948 \pm \mathcal{O}(10^{-5})$	0.6σ
	$0.966 \pm 0.008 \pm 0.014$	BABAR-2020		1.8σ
	0.968 ± 0.016	Average		1.7σ

Experimental status on observables related to the neutral transition $b\bar{b} \to \tau^+\tau^-$.

 New physics scenarios aiming to provide an explanation to the LFU violation anomalies in $b \to c au ar{
u}_{ au}$ decays also induce effects in the neutral-current $b \bar{b} \to au^+ au^-$ transition [Faroughy, Greljo, & Kamenik, 1609.07138; Aloni, Efrati, Grossman, & Nir, 1702.07356].

Test of LFU in $b \rightarrow s \mu^+ \mu^-$ decays

Experimental measurements related to the neutral-current transition $b\to s\mu^+\mu^-$ show deviations respect with the Standard Model (SM) predictions. The ratio of semileptonic decay channels,

$$R_{K^{(*)}} = \frac{\text{BR}(B \to K^{(*)}\mu^+\mu^-)}{\text{BR}(B \to K^{(*)}e^+e^-)},$$

provides a test of μ/e lepton flavor universality (LFU) in different dilepton mass-squared range q^2 .

• The ratio R_K was first reported in 2014 by the LHCb collaboration [arXiv:1406.6482],

$$R_K^{\rm LHCb-14} = 0.745^{+0.090}_{-0.074} \pm 0.036, \ \ {\rm for} \ q^2 \in [1.0, 6.0] \ {\rm GeV}^2,$$

which deviates from the SM prediction of $R_K^{\rm SM} \approx 1$ at the level of 2.6σ .

• Recently, the LHCb has released an updated measurement on R_K [arXiv:2103.11769]

$$R_K^{\text{LHCb-21}} = 0.846^{+0.044}_{-0.041}, \text{ for } q^2 \in [1.1, 6.0] \text{ GeV}^2,$$

which is 3.1σ away from the SM predicition.

$$b o s \mu^+ \mu^-$$
 anomalies!

Test of LFU in $b \rightarrow s \mu^+ \mu^-$ decays

• In 2017, the flavor ratio R_{K^*} was measured by the LHCb Collaboration in the low and central q^2 bins [arXiv:1705.05802],

$$R_{K^*}^{\mathrm{LHCb-17}} \quad = \quad \begin{cases} 0.66^{+0.11}_{-0.07} \pm 0.03, & \text{for } q^2 \in [0.045, 1.1] \; \mathrm{GeV^2}, \\ 0.69^{+0.11}_{-0.07} \pm 0.05, & \text{for } q^2 \in [1.1, 6.0] \; \mathrm{GeV^2}, \end{cases}$$

respectively. These measurements differ from the SM in the two q^2 regions by $\sim 2.3\sigma$ and $\sim 2.5\sigma$, respectively.

 These discrepancies are reinforced by some anomalous observables (such as angular observables and differential branching fraction) related with $B \to K^* \mu^+ \mu^-$ and $B_s \to \phi \mu^+ \mu^$ decays

$$b \rightarrow s \mu^+ \mu^-$$
 anomalies!

NP explanations to the B meson anomalies.

Global analyses

- The global analyses of $b \to s \mu^+ \mu^-$ data suggest various new physics solutions [Altmannshofer and Straub, 2103.13370; Carvunis et al 2102.13390; Alguero et al 2104.08921; Geng et al 2103.12738].
- Considering one NP operator or two related operators at a time and assuming new physics only in the muon sector, the $\mathcal{O}_9=(\bar{s}P_L\gamma_\mu b)(\bar{\mu}\gamma^\mu\mu)$ operator as well as a combination of \mathcal{O}_9 and $\mathcal{O}_9=(\bar{s}P_L\gamma_\mu b)(\bar{\mu}\gamma^\mu\gamma_5\mu)$ with $C_9=-C_{10}$ can account for all $b\to s\mu^+\mu^-$ data.
- These model independent solutions can be realized in several NP models.
- NP arising from LH vector C_{V_L} associated with the operator $(\bar{c}\gamma_{\mu}P_Lb)(\bar{\tau}\gamma^{\mu}P_L\nu_{\tau})$ is a preferred solution to address the anomalies, providing a good fit to the data.

Murgui, Peñuelas, Jung & Pich, 1904.09311; Mandal, Murgui, Peñuelas, & Pich, 2004.06726; Shi *et al*, 1905.08498; Blanke *et al*, 1905.08253; Bhardam & Ghosh, 1904.10432

We reanalize the single vector leptoquark model as a combined explanation.

(Phenomenological Approach)

U_1 leptoquark model

• The interaction of the $SU(2)_L$ singlet vector leptoquark $U_1 \equiv U_1 \sim ({\bf 3},{\bf 1},2/3)$ with the SM fermions can written as [Angelescu *et al*, 1808.08179; 2103.12504]

$$\Delta \mathcal{L}_{U_1} = (x_L^{ij} \bar{Q}_{iL} \gamma_\mu L_{jL} + x_R^{ij} \bar{d}_{iR} \gamma_\mu \ell_{jR}) U_1^\mu,$$

where quark-lepton flavor couplings x_L and x_R are (in general) complex 3×3 matrices, Q_L and L_L are the LH quark and lepton doublets.

- After integrating out the vector leptoquark U_1 , the Lagrangian $\Delta \mathcal{L}_{U_1}$ can generate tree-level contributions to **neutral-current** $b \to s \mu^+ \mu^-$ and **charged-current** $b \to c \tau^- \bar{\nu}_\tau$ transitions, as well as LFV decays $(B^+ \to K^+ \mu^\pm \tau^\mp, B_s \to \mu^\pm \tau^\mp, \tau \to \mu \phi, \Upsilon(nS) \to \mu^\pm \tau^\mp)$, and rare B decays $(B \to K \tau^+ \tau^-, B_s \to \tau^+ \tau^-)$.
- We will consider the flavor structure

$$x_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & x_L^{s\mu} & x_L^{s\tau} \\ 0 & x_L^{b\mu} & x_L^{b\tau} \end{pmatrix}, \quad x_R = 0.$$

We neglect RH contributions for simplicity. This is the so-called *minimal* U_1 *model*. [Angelescu *et al.* 1808.08179; 2103.12504].

Phenomenological analysis of the minimal U_1 model

To provide a robust phenomenological study we perform a χ^2 analysis by taking into account the following data:

- $b \rightarrow s \mu^+ \mu^-$ data: $C_9 = -C_{10}$ solution
- $b \to c \tau \bar{\nu}_{\tau}$ data: $R(D^{(*)})$ (HFLAV 2019 averages), $R(J/\psi)$, $R(X_c)$; the polarizations $P_{\tau}(D^*)$, $F_L(D^*)$; and the upper limit $\text{BR}(B_c^- \to \tau^- \bar{\nu}_{\tau}) < 10\,\%$.
- $b\bar{b} \to \tau^+\tau^-$ data: bottomonium ratios $R_{\Upsilon(nS)}$
- LFV decays $(B^+ \to K^+ \mu^\pm \tau^\mp, B_s \to \mu^\pm \tau^\mp, \tau \to \mu \phi, \Upsilon(nS) \to \mu^\pm \tau^\mp)$, and rare B decays $(B \to K \tau^+ \tau^-, B_s \to \tau^+ \tau^-)$.
- Projected Belle II scenarios (New!): for $50~{\rm ab}^{-1}$ data improvements at the level of $\sim 2-3\,\%$ and $\sim 2\,\%$ will be achieved for the uncertainties (statistical and systematic) of $R(D^*)$ [Belle II Physics Book, 1808.10567].
- LHC bounds: we include the recast of ATLAS and CMS regarding the direct searches and the high- p_T considerations of the $pp \to \ell \bar{\ell}$ differential cross section [Angelescu *et al*, 1808.08179; 2103.12504].

Four free-parameters $(x_L^{s\mu}, x_L^{s\tau}, x_L^{b\mu}, x_L^{b\tau})$ of the U_1 LQ model to be fitted. We fix the LQ mass to the benchmark value of $M_{U_1}=1.8$ TeV.

Phenomenological analysis of the minimal U_1 model

TABLE IV. The 1σ fit results of U_1 LQ couplings, $\chi^2_{\min}/N_{\text{dof}}$, and p-value for different data sets. In all the cases considered, we have used the benchmark mass value of $M_{U_1} = 1.8$ TeV.

Data set	$x_L^{s\mu}$	$x_L^{s\tau}$	$x_L^{b\mu}$	$x_L^{b\tau}$	$\chi^2_{\rm min}/N_{\rm dof}$	p-value (%)
All data	[-0.19, 0.15]	[0.08, 0.17]	[0.13, 0.18]	[1.25, 1.87]	6.26/15	97.5
All data $+R(\Lambda_c)_{LHCb}$	[-0.17, 0.14]	[0.06, 0.16]	$\left[0.14,0.20\right]$	$\left[1.24, 1.88\right]$	8.93/16	91.6
All data $+R(\Lambda_c)_{\text{Revisited}}$	[-0.18, 0.15]	[0.07, 0.16]	[0.14, 0.19]	[1.24, 1.88]	7.51/16	96.2
All data $+R(\Lambda_c)_{LHCb} + R_\Upsilon$	[-0.17, 0.15]	[0.06, 0.16]	[0.14, 0.19]	[1.22, 1.87]	12.7/21	85.1
All data $+R(\Lambda_c)_{\text{Revisited}} + R_{\Upsilon}$	[-0.18, 0.15]	$\left[0.07,0.16\right]$	$\left[0.14,0.19\right]$	$\left[1.23, 1.86\right]$	11.3/21	91.2

Parametric space minimal U_1 model

Addressing the $a_{\mu} = (g-2)_{\mu}$ anomaly

The combined experimental average (Fermilab (New!) and BNL E821) of the anomalous magnetic moment of the muon, $a_{\mu} = \frac{1}{2}(g-2)_{\mu}$

$$\Delta a_{\mu} = a_{\mu}^{\text{Exp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \times 10^{-11}.$$

shows a 4.2σ deviation from the SM contribution.

- The minimal U₁ model can contribute at the one-loop level to Δa_{μ} by economically allowing a single right-handed bottom-muon coupling $(x_{D}^{b\mu} \neq 0)$.
- The B meson anomalies ($b \rightarrow c au ar{
 u}_{ au}$ and $b \to s \mu^+ \mu^-$ data) and a_μ can be simultaneously explained within this singlet vector LQ model.

Conclusions

- The minimal U_1 model can provide a simultaneous explanation of the B meson anomalies ($b \to c \tau \bar{\nu}_{\tau}$ and $b \to s \mu^+ \mu^-$ data).
- Our results showed that the inclusion of the new observables $R(\Lambda_c)$ and $R_{\Upsilon(3S)}$ generates a **non-trivial tension** into the global fit, yielding to a worsening of the goodness of the fit.
- Future measurements from Belle II (as well as LHCb) will be a matter of importance to the model.
- Our results might be used as guide for model builders.
- By economically extending the minimal U_1 model with the addition of the right-handed bottom-muon coupling $(x_R^{b\mu} \neq 0)$ with large values, the $(g-2)_{\mu}$ anomaly can also be accommodated.

Lepton flavor universality

What is Lepton flavor universality?

The couplings of the leptons to the gauge bosons W and Z are flavour-independent: the interactions between leptons and gauge bosons are the same for all leptons. This property is called **lepton flavor universality (LFU)**.

LFU has been tested in:

ullet W bosons partial decay widths from LEP measurements

$$R_W^{\tau/\ell} = \frac{{\sf BR}(W \to \tau \bar{\nu}_\tau)}{{\sf BR}(W \to \mu \bar{\nu}_\mu)} = 1.070 \pm 0.026 \quad \textbf{(2.7}\sigma\textbf{)} \qquad [R_W^{\tau/\ell}]_{\sf SM} = 0.999$$

ullet ATLAS [arXiv:2007.14040] : $R_W^{ au/\ell} = 0.992 \pm 0.013$ (0.5 σ)

Introduction/Motivation

LFU has been tested in:

W and Z bosons partial decay widths from LEP measurements

$$\begin{split} R_W^{\mu/e} &= \frac{\text{BR}(W \to \mu \bar{\nu}_\mu)}{\text{BR}(W \to e \bar{\nu}_e)} = 0.983 \pm 0.018 & [R_W^{\mu/e}]_{\text{SM}} = 1.000 \\ R_Z^{\mu/e} &= \frac{\text{BR}(Z \to \mu \bar{\mu})}{\text{BR}(Z \to e \bar{e})} = 1.0009 \pm 0.0028 & [R_Z^{\mu/e}]_{\text{SM}} = 1.000 \\ R_Z^{\tau/e} &= \frac{\text{BR}(Z \to \tau \bar{\tau})}{\text{BR}(Z \to \mu \bar{\mu})} = 1.0020 \pm 0.0032 & [R_Z^{\tau/e}]_{\text{SM}} = 0.998 \end{split}$$

• Leptonic τ decays pose very stringent constraints on lepton universality [Pich, PPNP 75, 41 (2014)], as well as $P \to \ell \bar{\nu}_{\ell}$ and $P \to P' \ell \bar{\nu}_{\ell}$.

$$R_P^{\mu/e} = \frac{\mathsf{BR}(P \to \mu \bar{\nu}_\mu)}{\mathsf{BR}(P \to e\bar{\nu}_e)} \quad P = \pi, K, D, D_s$$

$$R_P^{\mu/e} = \frac{\mathsf{BR}(P \to P' \mu \bar{\nu}_\mu)}{\mathsf{BR}(P \to P' e\bar{\nu}_e)} \quad P^{(\prime)} = \pi, K, D, D_s$$

Test μ/e in excellent agreement between SM and experiment.

