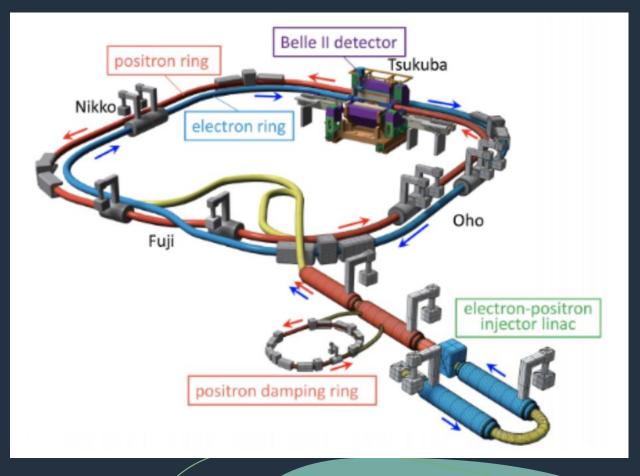
Experimental setup for highprecision laser polarisation determination

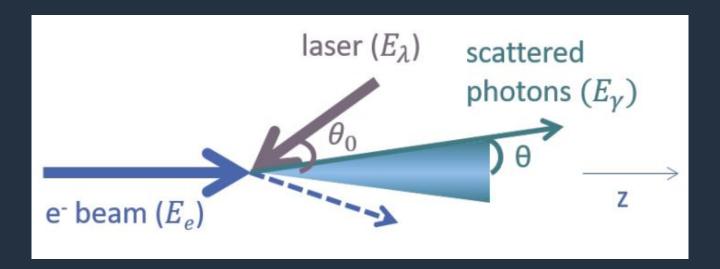
Santiago Rodríguez

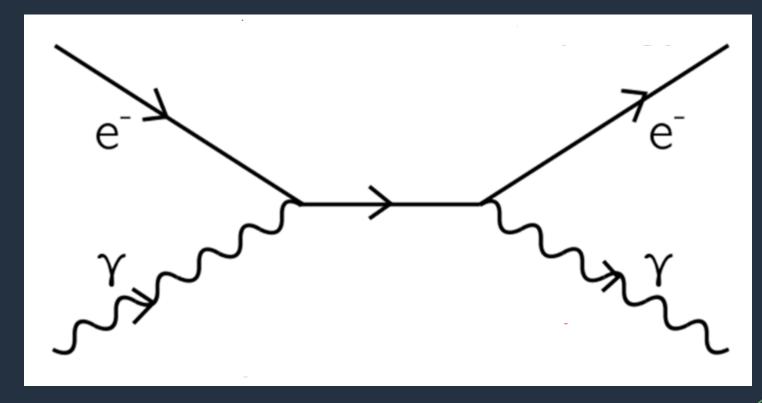
Aurélien Martens

MOTIVATION: We need to measure the polarization of high energy e- beams



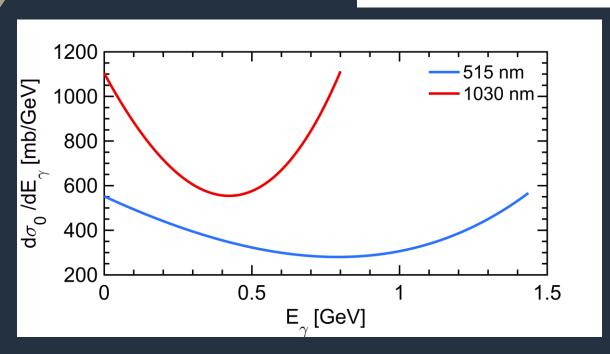
Inverse Compton Scattering

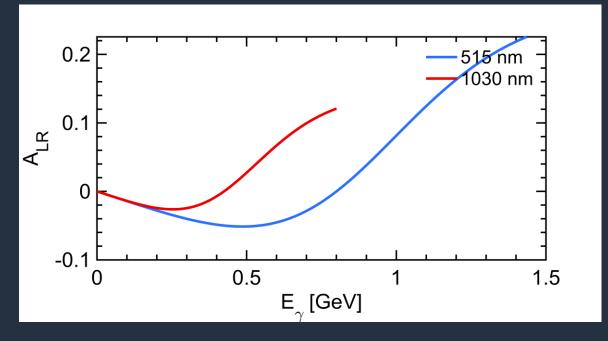




Differential cross section

$$\frac{d\sigma}{dE_{\gamma}}(E_{\gamma}) \approx \frac{d\sigma_0}{dE_{\gamma}}(1 + P_z P_c A_{LR})$$



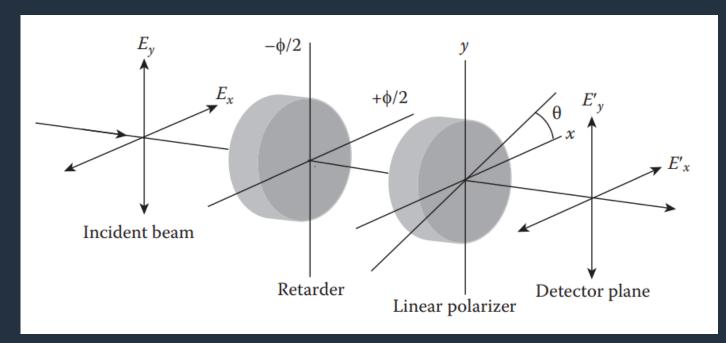


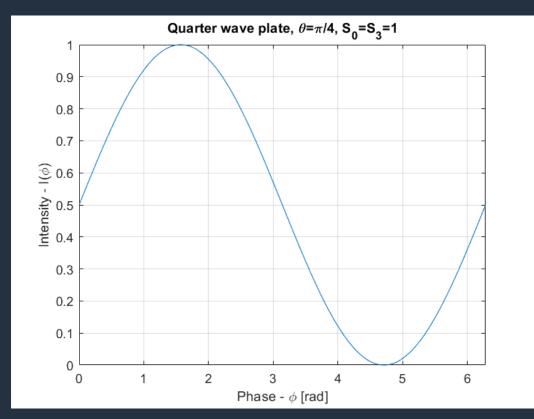
- Asymmetric term is obtained through QED
- If we want 0.1% accuracy and precision of Pz
 => we need 0.1% precision and accuracy of Pc

4

Classical measurement - Slow

$$I(\theta, \phi) = \frac{1}{2} [S_0 + S_1 \cos 2\theta + S_2 \sin 2\theta \cos \phi + S_3 \sin 2\theta \sin \phi].$$

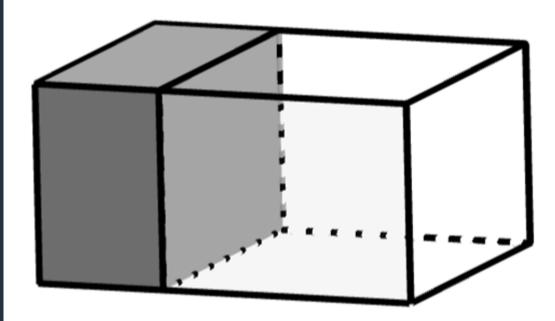




Dennis H Goldstein, Polarized Light - CRC Press Taylor & Francis Group

Photo-elastic modulator

Piezo-excited glass



$$n_x = n_0 \left(1 - \frac{n_0^2 q_{11}}{2} P \right)$$
 $n_y = n_0 \left(1 - \frac{n_0^2 q_{12}}{2} P \right)$

$$P = P(t) = P_m \sin(2\pi f t)$$

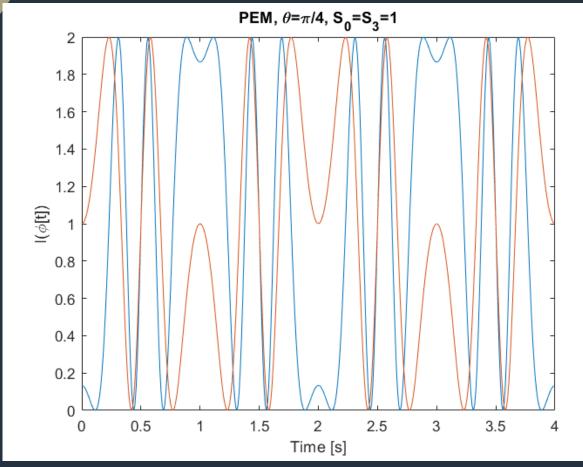
$$\phi(t) = \frac{2\pi e}{\lambda} (n_x - n_y) = \phi_0 \cos(2\pi f t)$$

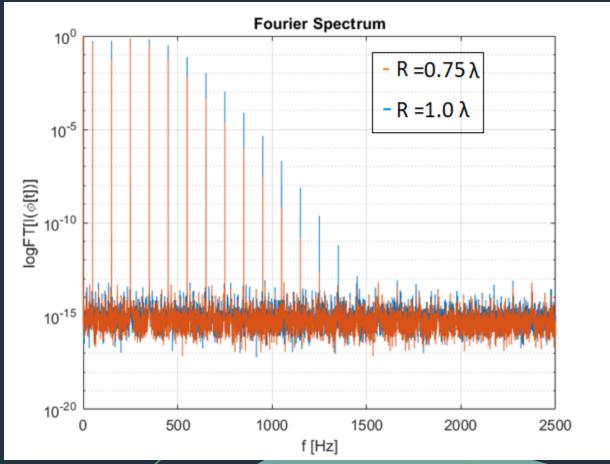
Modulated difference of refraction indices

D. Yang, J. C. Canit, E. Gaignebet; Photoelastic modulator - J. Optics (Paris)

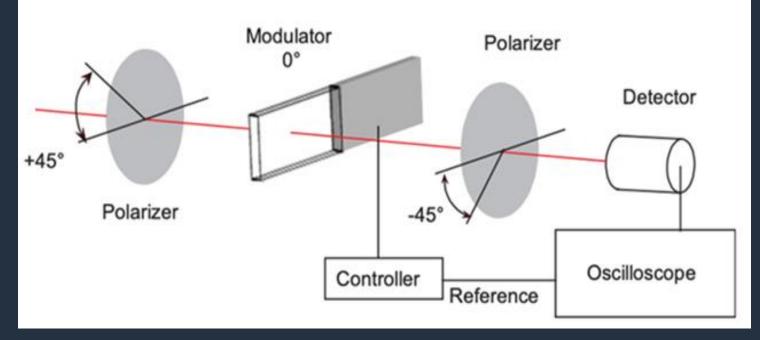
Intensity measured with PEM

$$I(\theta, \phi[t]) = \frac{1}{2} [S_0 + S_1 \cos(2\theta) + \sin(2\theta)(S_2 \cos(\phi[t]) - S_3 \sin(\phi[t])] \quad \phi(t) = \phi_0 \cos(2\pi f t) \quad \phi_0 = \frac{2\pi R}{\lambda}$$



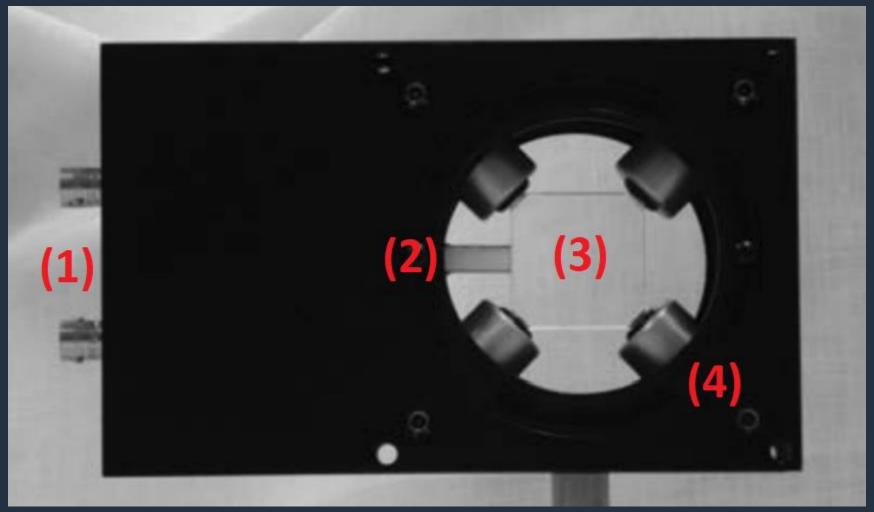


PEM calibration setup





Example of a real PEM



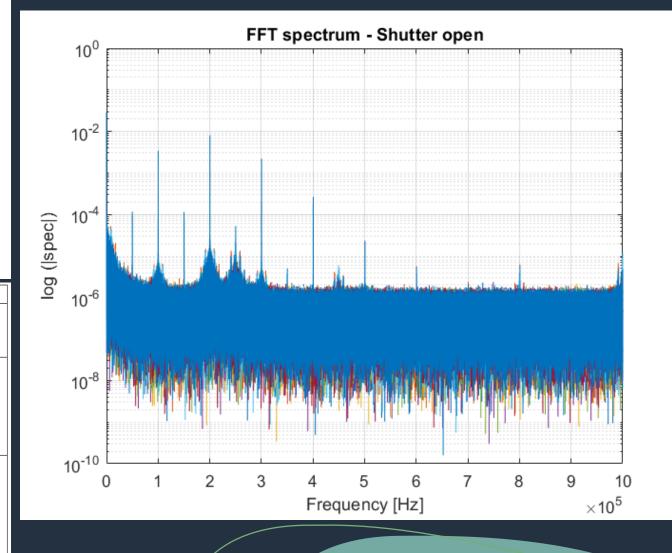
Dennis H Goldstein, Polarized Light - CRC Press Taylor & Francis Group

$\Phi = \delta_0 + \delta_1 \cos(2\pi f t + \phi_1) + \delta_2 \cos(4\pi f t + \phi_2)$

$$\begin{split} I(\delta_{0},\delta_{1},\delta_{2},t) &= I_{o} \bigg\{ 1 - J_{0}(\delta_{2})J_{0}(\delta_{1}) + 2\delta_{0}J_{0}(\delta_{2})J_{1}(\delta_{1})\cos(A) + 2\delta_{0}J_{1}(\delta_{2})J_{0}(\delta_{1})\cos(B) \\ &+ 2J_{1}(\delta_{2})J_{1}(\delta_{1}) \Big(\cos(A+B) + \cos(A-B) \Big) + 2\sum_{n=1}^{\infty} (-1)^{n} \Big[\delta_{0}J_{2n+1}(\delta_{2})J_{0}(\delta_{1})\cos((2n+1)B) \\ &+ J_{2n+1}(\delta_{2})J_{1}(\delta_{1}) \Big(\cos(A+(2n+1)B) + \cos(A-(2n+1)B) \Big) - J_{2n}(\delta_{2})J_{0}(\delta_{1})\cos(2nB) \\ &+ \delta_{0}J_{2n}(\delta_{2})J_{1}(\delta_{1}) \Big(\cos(A+2nB) + \cos(A-2nB) \Big) - J_{0}(\delta_{2})J_{2n}(\delta_{1})\cos(2nA) \\ &+ \delta_{0}J_{1}(\delta_{2})J_{2n}(\delta_{1}) \Big(\cos(2nA+B) + \cos(2nA-B) \Big) + \delta_{0}J_{0}(\delta_{2})J_{2n+1}(\delta_{1})\cos((2n+1)A) \\ &+ J_{1}(\delta_{2})J_{2n+1}(\delta_{1}) \Big(\cos((2n+1)A+B) + \cos((2n+1)A-B) \Big) \Big] + 2\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} (-1)^{k} (-1)^{n} \\ &\cdot \Big[J_{2k+1}(\delta_{2})J_{2n+1}(\delta_{1}) \Big(\cos((2n+1)A+(2k+1)B) + \cos((2n+1)A-(2k+1)B) \Big) \\ &+ \delta_{0}J_{2k+1}(\delta_{2})J_{2n}(\delta_{1}) \Big(\cos(2nA+(2k+1)B) + \cos(2nA-(2k+1)B) \Big) \\ &- J_{2k}(\delta_{2})J_{2n}(\delta_{1}) \Big(\cos((2n+1)A+2kB) + \cos((2n+1)A-2kB) \Big) \Big] \Big\} \end{split}$$

Frequency	Amplitude
n=0	$1 - J_0(\delta_2)J_0(\delta_1) + 2\left[J_2(\delta_2)J_4(\delta_1) - J_4(\delta_2)J_8(\delta_1) + J_6(\delta_2)J_{12}(\delta_1) - J_8(\delta_2)J_{16}(\delta_1) + \delta_0\left(J_3(\delta_2)J_6(\delta_1) - J_5(\delta_2)J_{10}(\delta_1) + J_7(\delta_2)J_{14}(\delta_1) - J_1(\delta_2)J_2(\delta_1)\right)\right]$
n=1	$2\left[J_{1}(\delta_{2})J_{1}(\delta_{1}) - J_{1}(\delta_{2})J_{3}(\delta_{1}) - J_{3}(\delta_{2})J_{5}(\delta_{1}) + J_{3}(\delta_{2})J_{7}(\delta_{1}) + J_{5}(\delta_{2})J_{9}(\delta_{1}) - J_{5}(\delta_{2})J_{11}(\delta_{1}) - J_{7}(\delta_{2})J_{13}(\delta_{1}) + J_{7}(\delta_{2})J_{15}(\delta_{1}) + J_{9}(\delta_{2})J_{17}(\delta_{1}) + \delta_{0}\left(J_{0}(\delta_{2})J_{1}(\delta_{1}) + J_{2}(\delta_{2})J_{3}(\delta_{1}) - J_{2}(\delta_{2})J_{5}(\delta_{1}) - J_{4}(\delta_{2})J_{7}(\delta_{1}) + J_{4}(\delta_{2})J_{9}(\delta_{1}) + J_{6}(\delta_{2})J_{11}(\delta_{1}) - J_{6}(\delta_{2})J_{13}(\delta_{1}) - J_{8}(\delta_{2})J_{15}(\delta_{1}) + J_{8}(\delta_{2})J_{17}(\delta_{1})\right)\right]$
n=2	$2\Big[J_{0}(\delta_{2})J_{2}(\delta_{1}) - J_{2}(\delta_{2})J_{2}(\delta_{1}) - J_{2}(\delta_{2})J_{6}(\delta_{1}) + J_{4}(\delta_{2})J_{6}(\delta_{1}) + J_{4}(\delta_{2})J_{10}(\delta_{1}) - J_{6}(\delta_{2})J_{10}(\delta_{1}) - J_{6}(\delta_{2})J_{14}(\delta_{1}) + J_{8}(\delta_{2})J_{14}(\delta_{1}) + \delta_{0}\Big(J_{1}(\delta_{2})J_{0}(\delta_{1}) + J_{1}(\delta_{2})J_{4}(\delta_{1}) - J_{3}(\delta_{2})J_{4}(\delta_{1}) - J_{3}(\delta_{2})J_{8}(\delta_{1}) + J_{5}(\delta_{2})J_{8}(\delta_{1}) + J_{5}(\delta_{2})J_{12}(\delta_{1}) - J_{7}(\delta_{2})J_{12}(\delta_{1}) - J_{7}(\delta_{2})J_{16}(\delta_{1}) + J_{9}(\delta_{2})J_{16}(\delta_{1})\Big)\Big]$

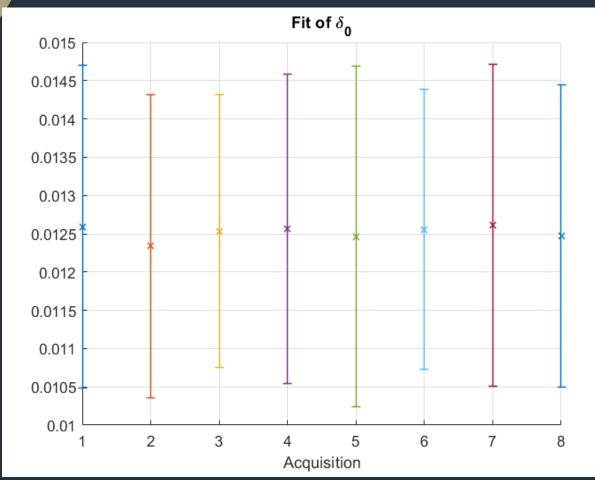
Non-linear approach

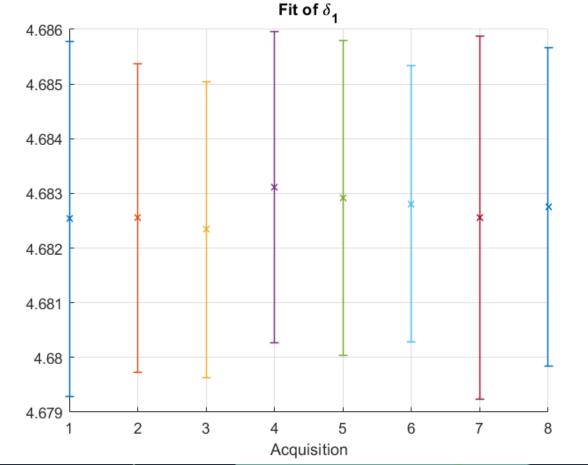


Experimental results

$$\delta_0 = \frac{2\pi}{\lambda} \Delta n \cdot e \; ; \; e(width) \to 10mm$$

$$\delta_1 = \frac{2\pi R}{\lambda} \approx 4.712$$

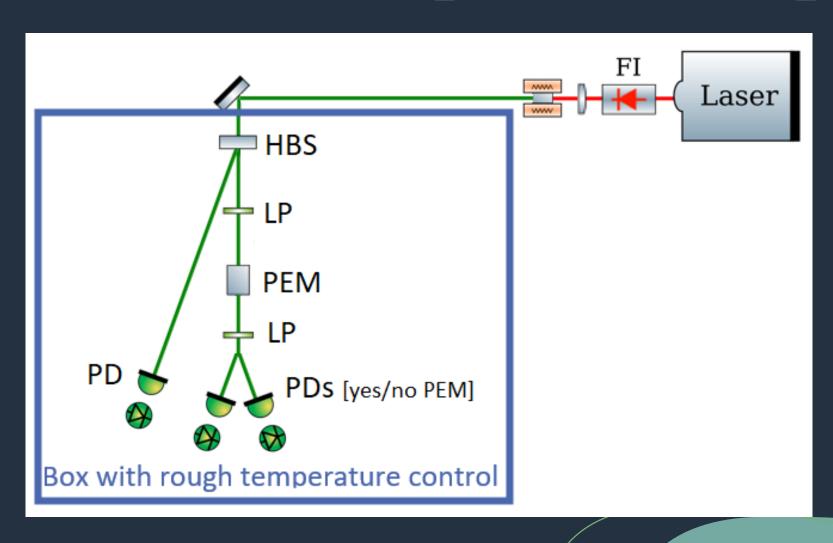


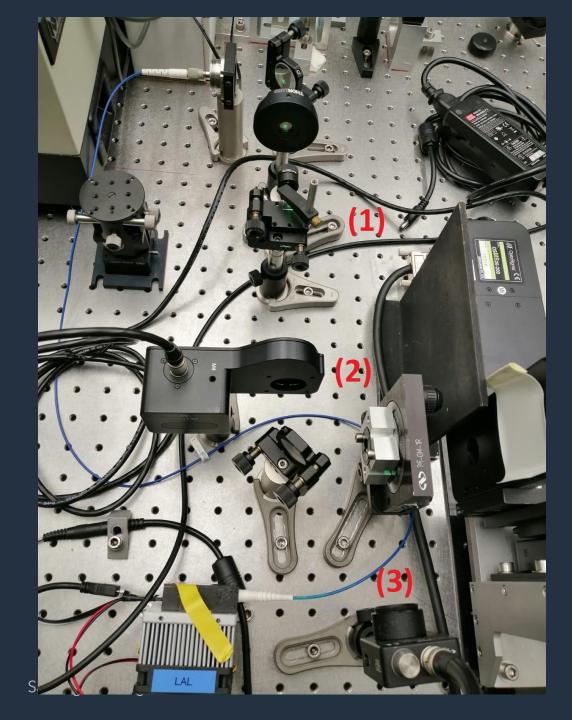


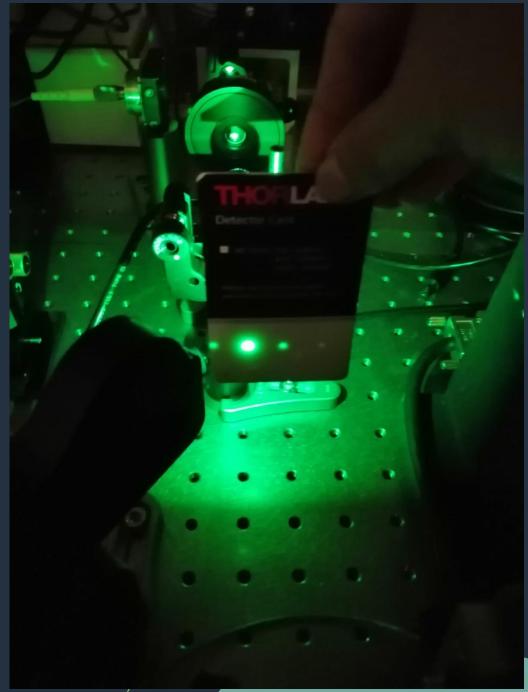
Conclusions and prospects

- The first order treatment gives stable and consistent results, especially for even harmonics.
- The use of the Fourier transform to analyze the signals represents a great advantage.
- For future work, higher order terms should be considered, keeping in mind the relative phase that is generated.

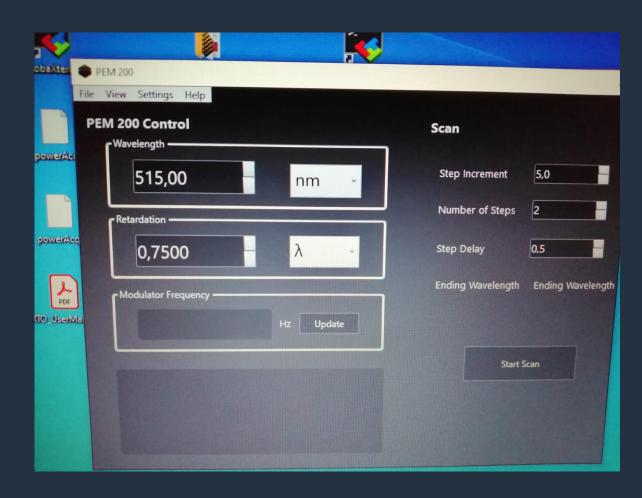
BACKUP – Optical setup





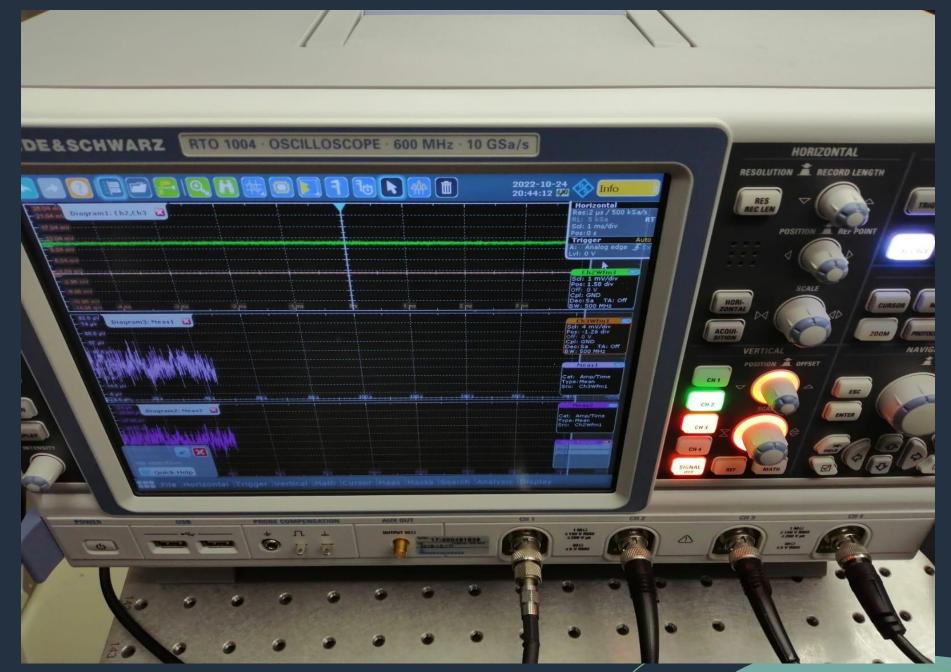


Drivers used in the optical room

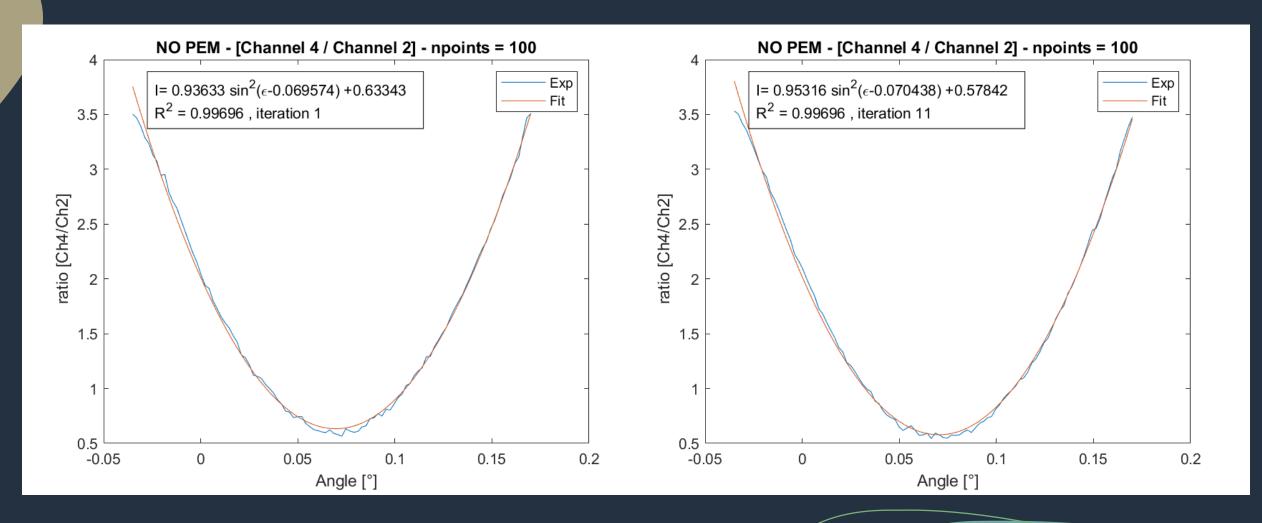


Second polarizer rotator

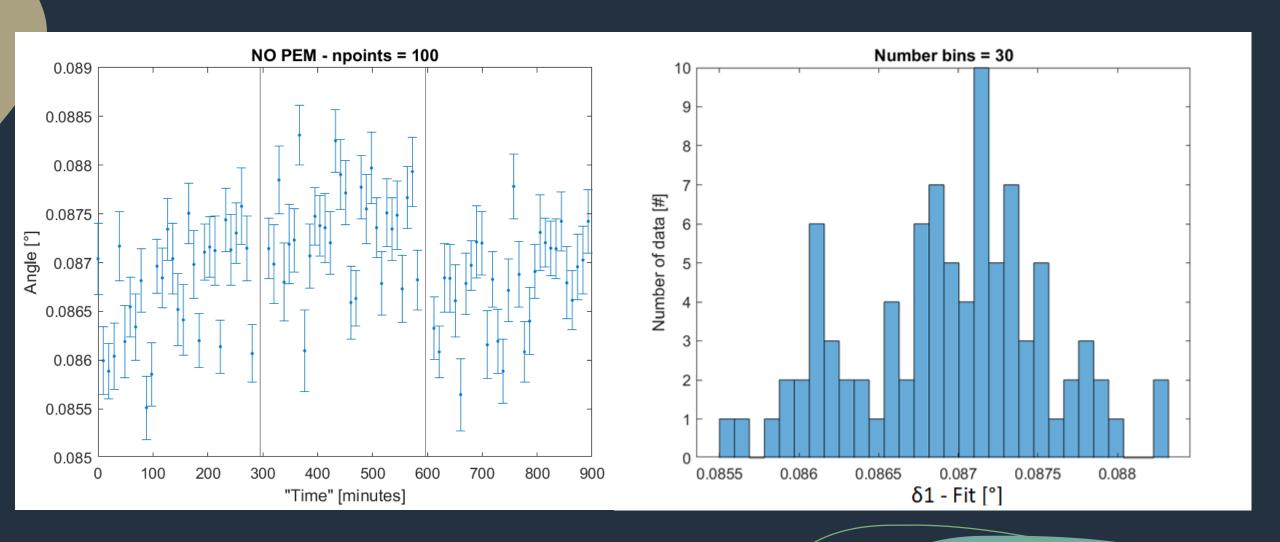
Photoelastic modulator controller



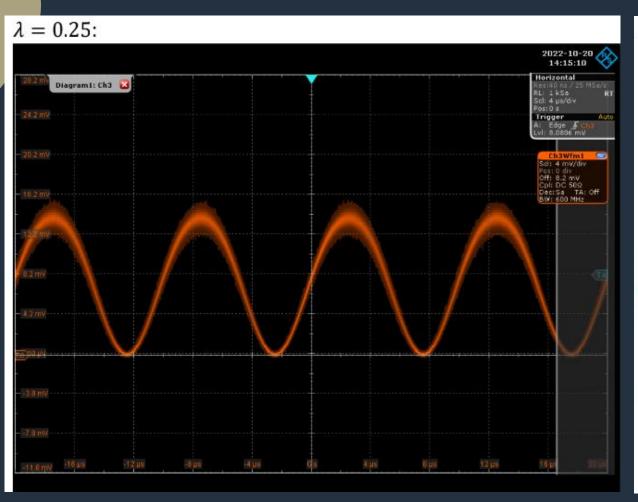
Looking for the cross angle



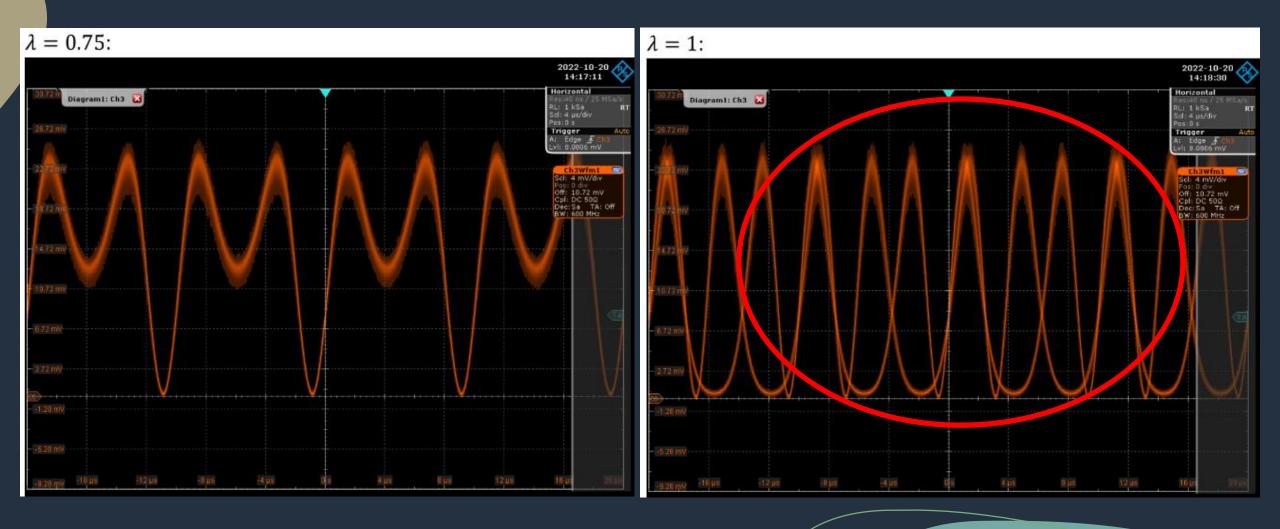
Collecting the data of three days

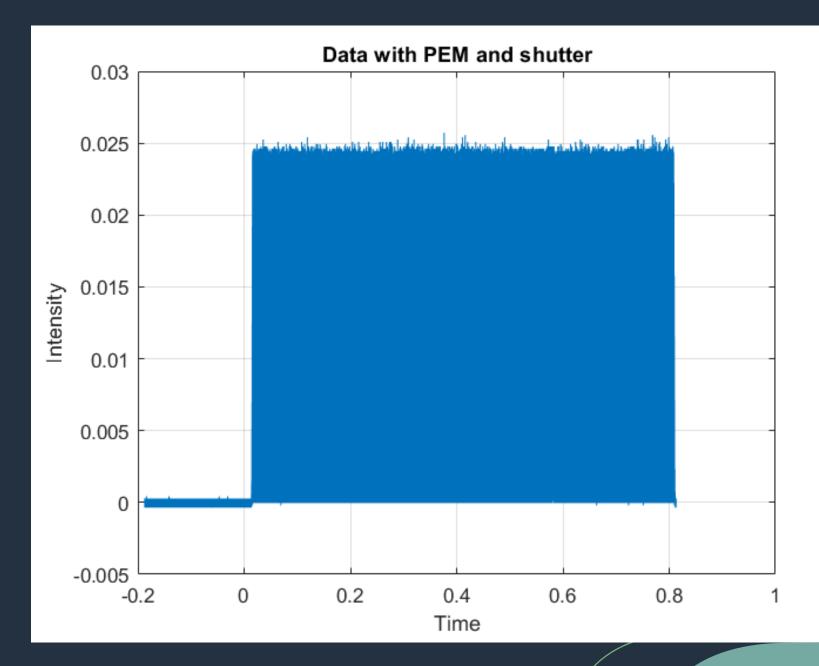


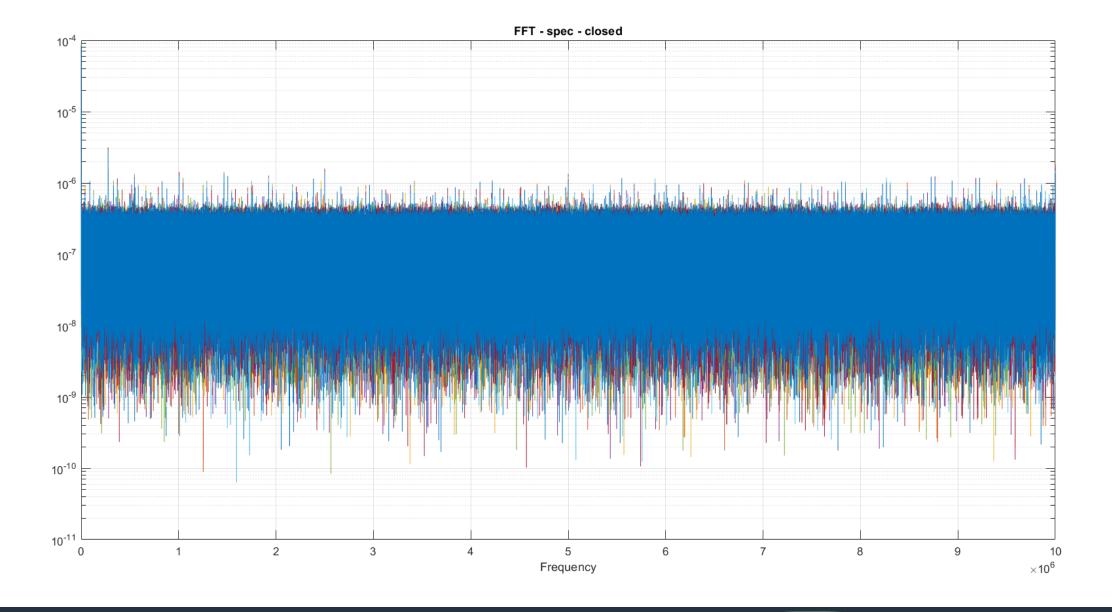
Using the PEM driver

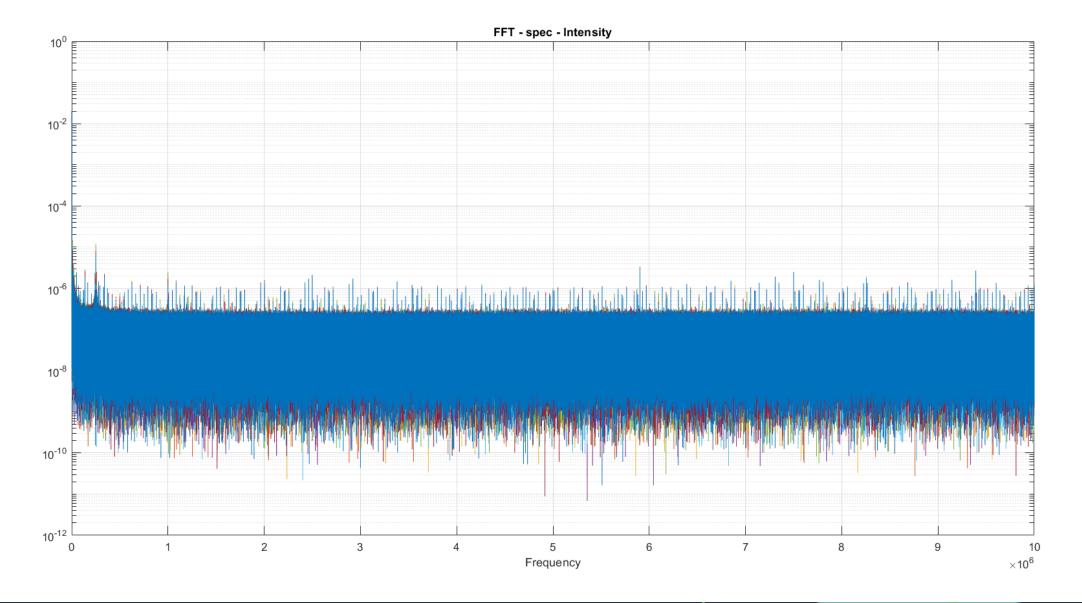


Relevance of trigger position!!!









Harmonic peaks and background zones

