TRIGGER DEVELOPMENT FOR LUMINOSITY MEASUREMENT AT LHCb

Andrés Gómez

Universidad Nacional de Colombia

This quantity relates the cross-section for a given physical process to the number of times it is observed by detectors

This quantity relates the cross-section for a given physical process to the number of times it is observed by detectors

$$\frac{dR}{dt} = \mathcal{L} \cdot \sigma_R$$

This quantity relates the cross-section for a given physical process to the number of times it is observed by detectors

$$\frac{dR}{dt} = \mathcal{L} \cdot \sigma_R$$

$$\mathcal{L} = \frac{N_1 N_2 f N_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}}$$

This quantity relates the cross-section for a given physical process to the number of times it is observed by detectors

$$\frac{dR}{dt} = \mathcal{L} \cdot \sigma_R$$

$$\mathcal{L} = \frac{N_1 N_2 f N_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}}$$

VDM (VAN DER MEER SCAN)

- It relies on move the beams in transverse coordinates to scan the overlap integral
- Cross section depends on the average number of interactions μ

$$\sigma = \int \frac{\mu(\Delta x, \Delta y)}{N_1 N_2} d\Delta x \, d\Delta y$$

BGI (BEAM GAS IMAGING)

- Determination of overlap integral after direct measurement of beam profiles
- It relies on the precise vertexing (primary vertex) capability of the LHCb experiment

$$\sigma = \int \int \int \int_{-\infty}^{-\infty} \rho_1(x, y) \rho_{1z}(z - z_0) \rho_2(x, y) \rho_{2z}(z + z_0) dx dy dz dz_0$$

$$\sigma = \frac{\mu_{ref}}{N_1 N_2 \sigma}$$

VDM (VAN DER MEER SCAN)

- It relies on move the beams in transverse coordinates to scan the overlap integral
- Cross section depends on the average number of interactions μ

BGI (BEAM GAS IMAGING)

- Determination of overlap integral after direct measurement of beam profiles
- It relies on the precise vertexing (primary vertex) capability of the LHCb experiment

$$\sigma = \int \int \int \int_{-\infty}^{-\infty} \rho_1(x, y) \rho_{1z}(z - z_0) \rho_2(x, y) \rho_{2z}(z + z_0) dx dy dz dz_0$$

$$\sigma = \frac{\mu_{ref}}{N_1 N_2 \sigma}$$

VDM (VAN DER MEER SCAN)

- It relies on move the beams in transverse coordinates to scan the overlap integral
- Cross section depends on the average number of interactions μ

BGI (BEAM GAS IMAGING)

- Determination of overlap integral after direct measurement of beam profiles
- It relies on the precise vertexing (primary vertex) capability of the LHCb experiment

$$\sigma = \int \int \int \int_{-\infty}^{-\infty} \rho_1(x, y) \rho_{1z}(z - z_0) \rho_2(x, y) \rho_{2z}(z + z_0) dx dy dz dz_0$$

$$\sigma = \frac{\mu_{ref}}{N_1 N_2 \sigma}$$

VELO

- VErtex LOcator detector
- Surrounds the collision region to reconstruct primary vertices
- The whole detector contains 41
 million 55 by 55 μm silicon pixels
- Vacuum of $\sim 10^{-6}$ mbar, beam pipe vacuum of $\sim 10^{-9}$ mbar

VELO

- VErtex LOcator detector
- Surrounds the collision region to reconstruct primary vertices
- The whole detector contains 41
 million 55 by 55 μm silicon pixels
- Vacuum of $\sim 10^{-6}$ mbar, beam pipe vacuum of $\sim 10^{-9}$ mbar

VELO

- VErtex LOcator detector
- Surrounds the collision region to reconstruct primary vertices
- The whole detector contains 41
 million 55 by 55 μm silicon pixels
- Vacuum of $\sim 10^{-6}$ mbar, beam pipe vacuum of $\sim 10^{-9}$ mbar

SMOG₂

- System for Measurement the Overlap with Gas
- It inject a noble gas with a low rate into the target cell
- Increase the pressure by two orders of magnitude (from $\sim 10^{-9}$ to $\sim 10^{-7}$ mbar)

BGI CONSTRAINS

- Gas injection through
 SMOG2 system, to
 produce beam-gas
 events with a veto in
 the interaction region
- Radius < 3 mm

Selection over three regions:

- "Up" for z < -250 mm</p>
- "IR" for -250 mm < z < 250 mm
- "Down" for z > 250 mm

Minimum track selection

- 10 tracks for "Up" and "Down"
- 28 tracks for "IR"

THREE-DIMENSIONAL PRIMARY VERTEX DISTRIBUTION

Georges Coombs, CERN Thesis 2021

THREE-DIMENSIONAL PRIMARY VERTEX DISTRIBUTION

Georges Coombs, CERN Thesis 2021

THREE-DIMENSIONAL PRIMARY VERTEX DISTRIBUTION

Georges Coombs, CERN Thesis 2021

THREE-DIMENSIONAL PRIMARY VERTEX

Georges Coombs, CERN Thesis 2021

DATA FLOW IN LHCb

DATA FLOW IN LHCb

ALLEN PROJECT

- LHCb High Level Trigger 1 (HLT1) application
- Filtering 30 million collisions per second to around 1-2 MHz
- Runs on Graphical Processing Units (GPUs)
- Goal: Development of trigger lines

ALLEN PROJECT

- LHCb High Level Trigger 1 (HLT1) application
- Filtering 30 million collisions per second to around 1-2 MHz
- Runs on Graphical Processing Units (GPUs)
- Goal: Development of trigger lines

TEST OVER SIMULATED SAMPLE WITH HELIUM

Beam one – Gas collisions

Trigger line 🗾	Event selection 🍩
Up region	1035/5000 (20%)
Interaction region	0/5000
Down region	0/5000

Beam – Beam and Beam one – Gas collisions

Trigger line 🗾	Event selection 💿
Up region	2055/10000 (20%)
Interaction region	7931/10000 (79%)
Down region	3/10000 (0.03%)

TRACK MULTIPLICITY

Event selection vs min_nTracks

SUMMARY

- Cross-section can be measure with VDM or BGI methods
- VELO is key for luminosity measurement
- SMOG2 is a useful tool for beam profile reconstruction in BGI
- Exploit increased beam-gas events with SMOG2 injection
- Check the efficiency of data selection on the trigger

CHAMIT TO DISI