Optimization of a jet finding algorithm for the HL-LHC ATLAS LO Trigger

Carlos Buitrago Gabriel Palacino Carlos Sandoval

Introduction - Motivation

Trigger algorithms help us select events of interest.

Demanding challenge!

Jet identification in the current hardware level: Fixed-Cone.

(Not Ideal)

Preferably:

- It should provide highly-efficient jet identification with accurate reconstruction of jet parameters.
- It should reproduce jet finding done in analyses as accurately as possible.

The HL ATLAS Global Trigger will allow more sophisticated algorithms.

→ A modified anti-kT was developed.

Specific signal topology:

- Multi-jet signals.
- Signals with jets that are spatially close together.

The anti-kT algorithm

$$d_{ij} = \min(p_{T,i}^{-2}, p_{T,j}^{-2}) \frac{\Delta R_{ij}^2}{R^2}$$

$$d_{iB} = p_{T,i}^{-2}$$

Recombination of i and j objects via the "E-Scheme"

We opt to use the "WTA" instead.

Algorithm inputs in our implementation:

Topoclusters from the GEP.

Regions of interest (RoIs)

The total number of topoclusters is too high _____

RoIs are defined using the Sliding Windows algorithm

SW: Which inputs to use? Which windows size to use?

Algorithm workflow (Summary)

Sliding
Windows is run
over gBlocks

Topoclusters
around each
Local Maximum
are collected

Anti-kT is run
over the
topoclusters in
each Rol

Algorithm performance: Last year results

MC samples used

Signal:

All-hadronic $Z' \to t\bar{t}$

Background: Low p_T dijet events

Non-resonant $HH \rightarrow bbbb$

Trigger efficiency as a function of the 4th jet p_T for different trigger thresholds

Optimization needed!

Parameter tweaking

Minimum E_T of the Local Maxima

Minimum E_T of the topoclusters

Number of RoIs

(40 GeV Threshold)

Algorithm optimization

• Partially reconstructed jets:

Number of jets reconstructed with the base anti-kT was higher.

We need to increase the number of jets reconstructed with our algorithm.

• Overlap removal:

Non-zero acceptance for events below the p_T threshold.

Removal of duplicated jets.

• Topotowers:

Need to get more information in the established number of iterations.

Use groups of topoclusters as an input.

Optimization results

Trigger rates - What comes next?

