| @ UNIVERSIDAD
= et NACIONAL
7% DE COLOMBIA

EXPERIMENT

Boosted W and H Tagging
using Lund Jet Plane

Rafael Andrei Vinasco Soler

Supervisors: Reina Camacho Toro, Carlos Sandoval.

And thanks to Mykola Khandoga and Jad Mathieu Sardain for their full support

o) HEP



ATLAS ATLAS DETECTOR

EXPERIMENT

Muon Spectrometer

Hadronic Calorimeter (TileCal)

LAr hadronic end-cap and
forward calorimeters

\ Pixel detector

| Toroid magnets [ \ ﬂ LAr electromagnetic calorimeters |

Electromagnetic Calorimeter (Liquid Argon)

Solenoid Magnet |Muon chambersl I Solenoid magnet l ‘ Transition radiation fracker

Semiconductor fracker

Transition Radiation Tracker
Tracking

Pixel & Silicon-Strip Detectors

Beampipe




ﬁl!nﬁ‘NsT What is our goal?

Use Lund plane variables as input for machine learning methods to develop a new
tagging methods for boosted W and Higgs bosons.

Jet: A set of collimated particles produced in the hadronization of a quark or gluon.

Background Signal

Parton level

\ Particle Jet Energy depositions
P in calorimeters

h/UJ/Z—-qq



ATLAS How we identify W Boosted boson now?

EXPERIMENT

Currently is used a tagger that perform cuts on 3 Jet substructure variables.
These cuts are made according to the Jet transverse momentum (pT).
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Plots taken from: Performance of W/Z taggers using UFO jets in ATLAS
https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
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https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf
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ATLAS Lund plane: Is a way to represent the phase space
of jet constituents reconstructed by reversing jet
clustering sequence.
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Lund image for a 2 TeV QCD jet
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Great to separate QCD and
W-jets

Lund plane variables:

o kT : Transverse momentum of

the emission.
o A : Emission angle
o Z : Momentum fraction of
branching
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Plots taken from: Dreyer, F.A., Salam, G.P. and Soyez, G. (2018). 5
The Lund jet plane. https://arxiv.org/pdf/1807.04758.pdf



https://arxiv.org/pdf/1807.04758.pdf

QI!TQOE‘NST Full Lund plane

e Using the Lund Plane we are going inside
2 ot the hadronization history. Every single
emission is represented!

e Ifis used the information of each emision
instead of using jet global variables we can
do a better background discrimitation

More information
used > Better performance

e Lund planes is made up as a set of vertices and their
connection edge, so this is an ideal input for Graph
Neural Networks!



?!;\I!Tﬁé Models (GNN architectures) tested

Traditional Neural Networks require input to be of fixed length whilst Graph
Neural Networks do not have this limitation, whether the input graph has 2
nodes or 20, the GNN model can handle it!

GNN architectures

LundNet (https://arxiv.org/pdf/2012.08526.pdf) m===p our inspiration
Graph Isomorphism Network (GINConv)

Graph Attention Network (GATConv)

Gated Graph Sequence Neural Network (GatedGraphConv)

All documented as GINConv, GATConv, GatedGraphConv, and PNAConvy,
respectively, at : .
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-|



https://arxiv.org/pdf/2012.08526.pdf
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers

ATLAS Data used for W tagge

Events were generated using Monte Carlo simulations in Powheg and Pythia 8
and the detector is simulated using Geant4. Precisely, this is the data used:

o Dijets:
mc16_13TeV.3647[03,09].Pythia8EvtGen_A14NNPDF23LO jetjet JZ[03,09]With
SW.deriv.DAOD JETM8.e7142 s3126 r10201_p4355

o W prime (only channel W’ to WZ is included):
mc16_13TeV.426347.Pythia8EvtGen A14NNPDF23LO_WprimeWZ_flatpT.deriv.
DAOD JETMS8.e6880 s3126 r10201 _p4355

Train size:
2% of dijet background and 10% of W signal.



ATLAS Signal and Background definitions

Signal and Background cuts:
Ungroomed Jet_pt > 200 GeV,
Jet pt> 200 GeV,
Jet pt < 3000 GeV,
Jet_mass > 40 GeV,
Jet_mass < 300 GeV,
Jet D2 >0,

Signal definition

Jet truth match with W boson
Ungroomed Jet_mass > 50 GeV
Number of b Hadrons =0



ATLAS Background rejection and Signal efficiency

Background rejection: How many Background is discarded for the classifier

1 li)deﬂtiﬁed 5
acC roun ¢ . . )
= & > “Background rejection’

o total
€background Nbgciground

Background rejection=200-1 of 200 background jets pass the selection

Signal efficiency: How many signal remain after the selection
identified

signal (eNe ‘ ;
€signal = gtotal » “Signal efficiency’

signal
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?ATLAS Tagger results
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Four different GNN structures have been tested.
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?ATLAS Tagger results

EXPERIMENT

LUNDNet + Number of tracks ( Ntrk )

Background Rejection VS pT Mass distribution
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!;};[!T“ﬁé Adversarial Network

In order to mass decorrelated the tagger an Adversarial Neural Network is added,
this network is a Mixture gaussian model that learn how is the mass of the Jet
using the output score of the classifier.

A new loss function is used: ( f=classifier , r=adversarial )

E(0f,0r) = Lf(05) — L(0,6;)

Where the purpose of the algorithm is:
(), 0, = arg min max E(0¢,0,).

0y 0,

13



YATLAS Classifier + adversarial results

EXPERIMENT

GATNet results (the best one)

QCD Rejection

—— Background rejection vs W-Signal efficiency LUNDNet
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YATLAS Classifier + adversarial results

EXPERIMENT

GATNet result (the best one)
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SATLAS What if...
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Is expected that the emissions coming from parton shower processes and not from
Hard processes have lower momentum, so this is the idea to do a Cut off in the
emissions used.

Only the 9 emissions with highest pT are taken.

Parton shower ( QCD emissions) — Expected Lower energy

This let us use more events and remove possible undesired emissions in the
training

16



?ATLAS Tagger using first 9 emissions
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Train size: 5% of dijet background and 5% of W signal. Results for LUNDNet + Ntrk
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@ATLAS Tagger using first 9 emissions
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Train size: 5% of dijet background and 5% of W signal. Results for LUNDNet + Ntrk

QCD rejection (1/¢)

=
o
<)

=
o
4

Background Rejection VS pT

m

| ATLAS work in progress

—— Background rejection vs pT

1500 2000 2500 3000

pT GeV

500 1000

Classifier + Adversarial result are not done yet!

QCD Jets(normalized)

Mass distribution

1 ATLAS work in progress
—— Total Background Mass distributionpt=[200,3000]
] — Tagged Background Mass distributionpt=[200,3000]
—— Signal Mass distributionpt=[200,3000]
5'0 160 15‘0 260 2_">0 3(')0

Mass GeV

18




6PATLAS Higgs to bb tagger
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I TTTTTTT]
]

R=0.2 Track Jet
R=0.2 Track Jet k]

Beamline h

Primary Vertex

Current Tagger: Use as input global variables for the large Jet R=1.0 and the ouput of a NN
flavor tagger for small jets R=0.2~0.4 inside the jet.



ATLAS Data selection
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Monte Carlo data samples used: G’ -> HH -> bbbb samples.

The mass of G’ is in the range of [400,6000] GeV.

Signal definition:

250 GeV < pT < 2800 GeV
In| < 2
76 < M,/ [GeV] > 146

Signal definition

Jet truth match with H boson
Number of b Hadrons > 1
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SATLAS Hi
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dggs to bb: Results

Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet

+ DXbb tagger
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SATLAS Higgs to bb: Results

EXPERIMENT

Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet

+ DXbb tagger

Mass distribution
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S ATLAS Higgs to bb: Adversarial Results
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Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet

+ DXbb tagger
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SATLAS Higgs to bb: Adversarial Results
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Mass distribution Background Rejection VS pT
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?ATLAS Summary

EXPERIMENT

W tagger:
e Presented 4 GNN architectures with improved performance over the

currently boosted W boson taggers.
e Optimized methods outperform current methods by around 50%, however

further improvements could be applied.
e Algorithm improvements are still needed to increase the background

rejection of the mass decorrelated taggers.

H to bb tagger:
e Using Lund Plane variables to improve the current tagger gives a tagger

which it's around ~10 times better.
e |t's necessary to improve Adversarial + classifier algorithm in order to

improve the mass decorrelation of the model. -
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Graph Neural Networks

Garphs: “mathematical structures used to model pairwise relations between
objects. A graph in this context is made up of vertices (also called nodes or
points) which are connected by edges (also called links or lines)”

A graph with six vertices and
seven edges.



https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge

Graph Neural Networks

We begin by summarizing some of the most common GNN models and, along the way, introduce our
notation. Let G = (V, ) denote a graph with node feature vectors X, for v € V. There are two tasks
of interest: (1) Node classification, where each node v € V' has an associated label ¥, and the goal is
to learn a representation vector h,, of v such that v’s label can be predicted as y, = f(hy); (2) Graph
classification, where, given a set of graphs {G, ..., G} C G and their labels {y,,...,yn} C Y, we
aim to learn a representation vector h that helps predict the label of an entire graph, y5 = g(hg).

-@%‘”m‘t\'\\

v vodod

Graph Rooted subtree

After k iterations of aggregation, a node is represented by its transformed
feature vector, which captures the structural information

he = READOUT ({r{®) | v € G}).

Plots and definitions taken from: HOW POWERFUL ARE GRAPH NEURAL NETWORKS? 29
https://arxiv.org/pdf/1810.00826.pdf



https://arxiv.org/pdf/1810.00826.pdf

/7 Lund

GATConv Block
C =(3278,32, heads=16)

GATConv Block
C =(16%32,64, heads=16)

GATConv Block
C =(16%32,64, heads=16)

GATConv Block
C =(16*8,16, heads=8)
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Model: GATNet

Linear (3072) + BN + ReLU
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EdgeConv Block
C=(6,32)

EdgeConv Block
C=(64,32)

EdgeConv Block
C = (64,64)

EdgeConv Block

C = (128,64)

EdgeConv Block
C=(128,128)

EdgeConv Block
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Model: C

LUNDNet
Linear (384) + BN + ReLU
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/7 Lund
oA . coordinates -

EdgeConv Block
C=(32,32)
EdgeConv Block
C=(3232)
EdgeConv Block
C=(3232)

EdgeConv Block

C=(32,32)
EdgeConv Block
C=(3232)
EdgeConv Block
C=(32,32)

LUNDNet + c

Gobal Variable

Linear (384) + BN + ReLU

Global Average Pooling

Fully Connected
256, ReLU, Dropout=0,1

Fully Connected
30, ReLU, Dropout=0,1

Fully Connected
1

Softmax
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?ATLAS Standard Tagger performance
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Lund Plane regions

In(ke/ GeV)

Primary Lund-plane regions

(v abue|) ysi

%
>
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Using In(Kt) and In(1//\) is easy to
identify differents regions.
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Mass sculpting
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After the selection the mass profile of
the background signal changed! To
avoid that we could use an
Adversarial Neural Network!
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Declustering algorithms

C/A anti—k, lg C/A l g,

’) o) x VY

- = 2 - 1 A :

J o \ I = 5 2
A ' A i q L q

e The Declustering algorithms tries to go inside the hadronization history in
order to determine where each emission is coming from.

Contribuciones a NLO:

(k¢ ‘ ‘ , .
/)(2 )(f_\, ) e _4(}1%, In? é LY — Kt algorithm
K

pga”ti'k‘)(A, k) ~ +8CF Cy In2 % L O(E). Anti-Kt algorithm

C/A algorithm -

7% . 1
Py I (A, k) = p1(A, k) 4y In—+0(1).



