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ATLAS DETECTOR



Use Lund plane variables as input for machine learning methods to develop a new 
tagging methods for boosted W and Higgs bosons.

Jet: A set of collimated particles produced in the hadronization of a quark or gluon.

Background                                                    Signal
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What is our goal? 



Currently is used a tagger that perform cuts on 3 Jet substructure variables. 
These cuts are made according to the Jet transverse momentum (pT).
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Plots taken from: Performance of W/Z taggers using UFO jets in ATLAS
https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf Jet Tagged!!

How we identify W Boosted boson now?

https://cds.cern.ch/record/2777009/files/ATL-PHYS-PUB-2021-029.pdf


● Great to separate QCD and 
W-jets

●  Lund plane variables:

Plots taken from: Dreyer, F.A., Salam, G.P. and Soyez, G. (2018). 
The Lund jet plane. https://arxiv.org/pdf/1807.04758.pdf
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○ kT : Transverse momentum of 
the emission.
○ Δ : Emission angle
○ Z : Momentum fraction of 
branching

Lund plane: Is a way to represent the phase space 
of jet constituents reconstructed by reversing jet 
clustering sequence.

https://arxiv.org/pdf/1807.04758.pdf
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● Using the Lund Plane we are going inside 
the hadronization history. Every single 
emission is represented!

 
● If is used the information of each emision 

instead of using jet global variables we can 
do a better background discrimitation

More information 
used Better performance

● Lund planes is made up as a set of vertices and their 
connection edge, so this is an ideal input for Graph 
Neural Networks!

Full Lund plane



● LundNet (https://arxiv.org/pdf/2012.08526.pdf)           our inspiration
● Graph Isomorphism Network (GINConv)
● Graph Attention Network (GATConv)
● Gated Graph Sequence Neural Network (GatedGraphConv)

All documented as GINConv, GATConv, GatedGraphConv, and PNAConv, 
respectively, at :
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-l
ayers
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Traditional Neural Networks require input to be of fixed length whilst Graph 
Neural Networks do not have this limitation, whether the input graph has 2 
nodes or 20, the GNN model can handle it!

GNN architectures

Models (GNN architectures) tested

https://arxiv.org/pdf/2012.08526.pdf
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers


Events were generated using Monte Carlo simulations in Powheg and Pythia 8 
and the detector is simulated using Geant4. Precisely, this is the data used:

○ Dijets: 
mc16_13TeV.3647[03,09].Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ[03,09]With
SW.deriv.DAOD_JETM8.e7142_s3126_r10201_p4355

○ W prime (only channel W’ to WZ is included):
mc16_13TeV.426347.Pythia8EvtGen_A14NNPDF23LO_WprimeWZ_flatpT.deriv.
DAOD_JETM8.e6880_s3126_r10201_p4355

Train size: 
2% of dijet background and 10% of W signal. 
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Data used for W tagge



           Ungroomed Jet_pt > 200 GeV,
           Jet_pt >  200 GeV,
           Jet_pt < 3000 GeV,
           Jet_mass >  40 GeV,
           Jet_mass < 300 GeV,
           Jet_D2 > 0,

Signal definition        

Jet truth match with W boson 
Ungroomed Jet_mass > 50 GeV
Number of b Hadrons = 0

Signal and Background cuts:        
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Signal and Background definitions
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Background rejection and Signal efficiency

Background rejection: How many Background is discarded for the classifier

Signal efficiency: How many signal remain after the selection

Background rejection=200      1 of 200 background jets pass the selection 
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Tagger results
Four different GNN structures have been tested.

○ 50 GeV < Jet mass < 300 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0
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Tagger results

○ 50 GeV < Jet mass < 300 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

LUNDNet + Number of tracks ( Ntrk )



In order to mass decorrelated the tagger an Adversarial Neural Network is added, 
this network is a Mixture gaussian model that learn how is the mass of the Jet 
using the output score of the classifier.

A new loss function is used:  ( f=classifier  , r=adversarial )

Where the purpose of the algorithm is:
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Adversarial Network
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Classifier + adversarial results

○ 50 GeV < Jet mass < 300 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

GATNet results (the best one)
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Classifier + adversarial results

○ 50 GeV < Jet mass < 300 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

GATNet result (the best one)
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What if…

Is expected that the emissions coming from parton shower processes and not from 
Hard processes have lower momentum, so this is the idea to do a Cut off in the 
emissions used. 

Only the 9 emissions with highest pT are taken.   

Parton shower ( QCD emissions)                          Expected Lower energy

This let us use more events and remove possible undesired emissions in the 
training

       



17

Tagger using first 9 emissions

○ 50 GeV < Jet mass < 300 GeV
○ | Jet eta | < 2

○ Jet truth match with W boson 
○ Number of b Hadrons = 0

Train size: 5% of dijet background and 5% of W signal. Results for LUNDNet + Ntrk
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Tagger using first 9 emissions

Classifier + Adversarial result are not done yet! 

Train size: 5% of dijet background and 5% of W signal. Results for LUNDNet + Ntrk
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Higgs to bb tagger

Current Tagger: Use as input global variables for the large Jet R=1.0 and the ouput of a NN 
flavor tagger for small jets R=0.2~0.4 inside the jet.
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Data selection

Signal definition:      

                     250 GeV < pT < 2800 GeV

Signal definition        

Jet truth match with H boson 
Number of b Hadrons > 1

Monte Carlo data samples used: G’ -> HH -> bbbb  samples. 

                                                        The mass of G’ is in the range of [400,6000] GeV.
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Higgs to bb: Results
Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet 
+ DXbb tagger

○ 76 GeV < Jet mass < 146 GeV
○ | Jet eta | < 2

○ Jet truth match with H boson 
○ Number of b Hadrons > 1
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Higgs to bb: Results
Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet 
+ DXbb tagger

○ 76 GeV < Jet mass < 146 GeV
○ | Jet eta | < 2

○ Jet truth match with H boson 
○ Number of b Hadrons > 1
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Higgs to bb: Adversarial Results
Train size: 2% of dijet background and 40% of H to bb signal. Results for LUNDNet 
+ DXbb tagger

○ 76 GeV < Jet mass < 146 GeV
○ | Jet eta | < 2

○ Jet truth match with H boson 
○ Number of b Hadrons > 1
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Higgs to bb: Adversarial Results

○ 76 GeV < Jet mass < 146 GeV
○ | Jet eta | < 2

○ Jet truth match with H boson 
○ Number of b Hadrons > 1



● Presented 4 GNN architectures with improved performance over the 
currently boosted W boson taggers.

● Optimized methods outperform current methods by around 50%, however 
further improvements could be applied. 

● Algorithm improvements are still needed to increase the background 
rejection of the mass decorrelated taggers.
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Summary
W tagger:

H to bb tagger:
● Using Lund Plane variables to improve the current tagger gives a tagger 

which it’s around ~10  times better. 
● It’s necessary to improve Adversarial + classifier algorithm in order to 

improve the mass decorrelation of the model.



Thanks for your attention :) 
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BACKUP ;)
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Graph Neural Networks
Neural Networks
raph Neural Networks

A graph with six vertices and 
seven edges.

Garphs: “mathematical structures used to model pairwise relations between 
objects. A graph in this context is made up of vertices (also called nodes or 
points) which are connected by edges (also called links or lines)”

https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Glossary_of_graph_theory_terms#edge
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After k iterations of aggregation, a node is represented by its transformed 
feature vector, which captures the structural information

Plots and definitions taken from: HOW POWERFUL ARE GRAPH NEURAL NETWORKS?  
https://arxiv.org/pdf/1810.00826.pdf 

Graph Neural Networks
Neural Networks
raph Neural Networks

https://arxiv.org/pdf/1810.00826.pdf
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Signal performance
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Background performance

Standard Tagger performance



Lund Plane regions

Using ln(Kt) and ln(1/    )  is easy to 
identify differents regions.
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Mass sculpting

After the selection the mass profile of 
the background signal changed! To 
avoid that we could use an 
Adversarial Neural Network!
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Declustering algorithms

● The Declustering algorithms tries to go inside the hadronization history in 
order to determine where each emission is coming from. 
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Contribuciones a NLO:

Kt algorithm

Anti-Kt algorithm

C/A algorithm


