$$
D_{s}^{+} \rightarrow K^{+} K^{-} K^{+}
$$

|Radiation topologies analysis

David Alejandro Barón Ospina

Motivation

Motivation

$$
D^{+} \rightarrow K^{+} K^{-} K^{+}
$$

Motivation

$$
D^{+} \rightarrow K^{+} K^{-} K^{+}
$$

Motivation

$$
D^{+} \rightarrow K^{+} K^{-} K^{+}
$$

Motivation

$$
D^{+} \rightarrow K^{+} K^{-} K^{+}
$$

$K^{+} \leftrightarrow u \bar{s}$
(un)?

\bar{s}

Resonant and non resonant contributions

Resonant and non resonant contributions

Resonant and non resonant contributions

Resonant and non resonant contributions

$R: \phi, f_{0}$

Non resonant weak vertex

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} u_{i s}^{+}\right)
$$

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} u_{i s}^{+}\right)
$$

It indexes the D mesons

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} \frac{u_{i s}^{+}}{\text {It indexes the D mesons }}\right.
$$

It has kaons and pions fields

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} \frac{u_{i s}^{+}}{u^{+}}\right.
$$

$$
\langle 0| \bar{c} \gamma^{\mu} \gamma^{5} s\left|D_{s}^{+}\right\rangle=i f_{D} P_{D_{s}^{+}}^{\mu}
$$

It has kaons and pions fields

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} \frac{u_{i s}^{+}}{u^{+}}\right.
$$

$$
\begin{aligned}
& \langle 0| \bar{c} \gamma^{\mu} \gamma^{5} s\left|D_{s}^{+}\right\rangle=i f_{D} P_{D_{s}^{+}}^{\mu} \\
& \quad \alpha=\sqrt{m_{D}} f_{D}
\end{aligned}
$$

It has kaons and pions fields

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} u_{i s}^{+}\right)
$$

$$
\begin{aligned}
& \langle 0| \bar{c} \gamma^{\mu} \gamma^{5} s\left|D_{s}^{+}\right\rangle=i f_{D} P_{D_{s}^{+}}^{\mu} \\
& \quad \alpha=\sqrt{m_{D}} f_{D}
\end{aligned}
$$

$$
\left\langle W^{+} \phi^{e} \phi^{f} \| D_{s}^{+}\right\rangle=-\frac{g}{2 \sqrt{2}} V_{c s}^{*} \frac{f_{D}}{16 f^{2}} P_{D}^{\mu}\left(\lambda_{e} \lambda_{f}+\lambda_{f} \lambda_{e}\right)_{s s} \varepsilon_{\mu}^{*}\left(P_{W}\right)
$$

Non resonant weak vertex

$$
\bar{c} \gamma^{\mu}\left(1-\gamma^{5}\right) s \rightarrow \frac{i}{2} \alpha \operatorname{Tr}\left(\gamma^{\mu}\left(1-\gamma^{5}\right) H_{i} u_{i s}^{+}\right)
$$

$$
\begin{aligned}
& \langle 0| \bar{c} \gamma^{\mu} \gamma^{5} s\left|D_{s}^{+}\right\rangle=i f_{D} P_{D_{s}^{+}}^{\mu} \\
& \quad \alpha=\sqrt{m_{D}} f_{D}
\end{aligned}
$$

$$
\left\langle W^{+} \phi^{e} \phi^{f}\right|\left|D_{s}^{+}\right\rangle=-\frac{g}{2 \sqrt{2}} V_{c s}^{*} \frac{f_{D}}{16 f^{2}} P_{D}^{\mu}\left(\lambda_{e} \lambda_{f}+\lambda_{f} \lambda_{e}\right)_{s s} \varepsilon_{\mu}^{*}\left(P_{W}\right)
$$

Resonant weak vertexes

Resonant weak vertexes

$$
\left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g\left(S_{1} P_{D}^{\mu}+S_{2} P_{R}^{\mu}\right) \varepsilon_{\mu}^{*}\left(P_{W}\right)
$$

Resonant weak vertexes

$$
\begin{aligned}
& \left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g\left(S_{1} P_{D}^{\mu}+S_{2} P_{R}^{\mu}\right) \varepsilon_{\mu}^{*}\left(P_{W}\right) \\
& \left\langle W^{+} \phi \| D_{s}^{+}\right\rangle=V_{c s}^{*} g \sin \theta\left(V_{1} \delta^{\alpha v} P_{\phi}^{\mu}+V_{2} \delta^{\alpha v} P_{\phi}^{\mu}+V_{3} P_{D}^{\mu} P_{D}^{\alpha} P_{\phi}^{v}\right. \\
& \left.+V_{4} P_{D}^{\mu} P_{\phi}^{\alpha} P_{\phi}^{v}-(\mu \leftrightarrow v)\right)\left(\frac{i}{m_{\phi}}\left(P_{\phi \mu} \varepsilon_{v}\left(P_{\phi}\right)-P_{\phi v} \varepsilon_{\mu}\left(P_{\phi}\right)\right)\right)^{*} \varepsilon_{\alpha}^{*}\left(P_{w}\right)
\end{aligned}
$$

Resonant weak vertexes

$$
\begin{aligned}
& \left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g\left(S_{1} P_{D}^{\mu}+S_{2} P_{R}^{\mu}\right) \varepsilon_{\mu}^{*}\left(P_{W}\right) \\
& \left\langle W^{+} \phi\right|\left|D_{s}^{+}\right\rangle=V_{c s}^{*} g \sin \theta\left(\bar{V}_{1} \delta^{\alpha v} P_{\phi}^{\mu}+V_{2} \delta^{\alpha v} P_{\phi}^{\mu}+V_{3} P_{D}^{\mu} P_{D}^{\alpha} P_{\phi}^{v}\right. \\
& \left.+V_{4} P_{D}^{\mu} P_{\phi}^{\alpha} P_{\phi}^{v}-(\mu \leftrightarrow v)\right)\left(\frac{i}{m_{\phi}}\left(P_{\phi \mu} \varepsilon_{v}\left(P_{\phi}\right)-P_{\phi v} \varepsilon_{\mu}\left(P_{\phi}\right)\right)\right)^{*} \varepsilon_{\alpha}^{*}\left(P_{w}\right)
\end{aligned}
$$

Resonant weak vertexes

$$
\begin{aligned}
& \left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g\left(S_{1} P_{D}^{\mu}+S_{2} P_{R}^{\mu}\right) \varepsilon_{\mu}^{*}\left(P_{W}\right) \\
& \left\langle W^{+} \phi \mid D_{s}^{+}\right\rangle=V_{c s}^{*} g \sin \theta\left(\overline{V_{1}} \delta^{\alpha v} P_{\phi}^{\mu}+V_{2} \delta^{\alpha v} P_{\phi}^{\mu}+V_{3} P_{D}^{\mu} P_{D}^{\alpha} P_{\phi}^{v}\right. \\
& \left.+V_{4} P_{D}^{\mu} P_{\phi}^{\alpha} P_{\phi}^{v}-(\mu \leftrightarrow v)\left(\frac{i}{m_{\phi}}\left(P_{\phi \mu} \varepsilon_{v}\left(P_{\phi}\right)-P_{\phi v} \varepsilon_{\mu}\left(P_{\phi}\right)\right)\right)\right)^{2} \varepsilon_{\alpha}^{*}\left(P_{w}\right)
\end{aligned}
$$

Constant weak vertex approximation

Constant weak vertex approximation

$$
\left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g S P_{D}^{\mu} \varepsilon_{\mu}^{*}\left(P_{w}\right)
$$

Constant weak vertex approximation

$$
\left\langle W^{+} f_{0} \| D_{s}^{+}\right\rangle=V_{c s}^{*} g S P_{D}^{\mu} \varepsilon_{\mu}^{*}\left(P_{w}\right)
$$

$$
\begin{aligned}
\left\langle W^{+} \phi \| D_{s}^{+}\right\rangle= & V_{c s}^{*} g \sin \theta\left(V \delta^{\alpha v} P_{D}^{\mu}-(\mu \leftrightarrow v)\right) \\
& \left(\frac{i}{m_{\phi}}\left(P_{\phi \mu} \varepsilon_{v}\left(P_{\phi}\right)-P_{\phi v} \varepsilon_{\mu}\left(P_{\phi}\right)\right)\right)^{*} \varepsilon_{\alpha}^{*}\left(P_{w}\right)
\end{aligned}
$$

Final states interactions

Final states interactions

Final states interactions

Final states interactions

Final states interactions

Final states interactions

$$
\sum_{e f} i \kappa_{a b \mid e f}\left(\delta_{e f \mid c d}+M_{e f \mid c d}+M_{e f \mid c d}^{2}+\ldots \ldots\right)=\sum_{e f} i \kappa_{a b \mid e f} \sum_{n=0}^{\infty} M_{e f \mid c d}^{n}
$$

$$
\sum_{e f} i \kappa_{a b \mid e f}\left(\delta_{e f \mid c d}+M_{e f \mid c d}+M_{e f \mid c d}^{2}+\ldots \ldots\right)=\sum_{e f} i \kappa_{a b \mid e f} \sum_{n=0}^{\infty} M_{e f \mid c d}^{n}
$$

$$
\langle a b||c d\rangle=\sum_{e f} i \kappa_{a b \mid e f}\left(\frac{1}{1-M}\right)_{e f \mid c d}
$$

Example: ϕ

Example: ϕ

$$
\left\langle K^{-}\left(P_{1}\right) K^{+}\left(P_{2}\right)\left[K^{+}\left(P_{3}\right)\right]\right| V_{8}^{K K}\left|D_{s}^{+}\left(P_{D}\right)\right\rangle=\frac{i}{2}\left(m_{13}^{2}-m_{23}^{2}\right) \Gamma_{(0) K K}^{(1,0)}
$$

Example: ϕ

$$
\left\langle K^{-}\left(P_{1}\right) K^{+}\left(P_{2}\right)\left[K^{+}\left(P_{3}\right)\right]\right| V_{8}^{K K}\left|D_{s}^{+}\left(P_{D}\right)\right\rangle=\frac{i}{2}\left(m_{13}^{2}-m_{23}^{2}\right) \Gamma_{(0) K K}^{(1,0)}
$$

$\boldsymbol{\Gamma}^{[J, I]} \quad$ Tree-level amplitude $D_{s}^{+} \rightarrow K^{+}\left(P_{3}\right) a\left(P_{2}\right) b\left(P_{1}\right)$
(0) ab of the pair $a\left(P_{2}\right) b\left(P_{1}\right)$ component with quantum numbers J, I

Example: ϕ

$$
\begin{gathered}
\left\langle K^{-}\left(P_{1}\right) K^{+}\left(P_{2}\right)\left[K^{+}\left(P_{3}\right)\right]\right| V_{8}^{K K}\left|D_{s}^{+}\left(P_{D}\right)\right\rangle=\frac{i}{2}\left(m_{13}^{2}-m_{23}^{2}\right) \Gamma_{(0) K K}^{(1,0)} \\
\left.\boldsymbol{\Gamma}^{[J, I]} \begin{array}{l}
\text { Tree-level amplitude } D_{s}^{+} \rightarrow K^{+}\left(P_{3}\right) a\left(P_{2}\right) b\left(P_{1}\right) \\
\\
\\
\\
\\
\\
\hline, I
\end{array}\right) \\
\left\langle K^{-} K^{+} K^{+} \| D_{s}^{+}\right\rangle=\frac{\frac{i}{2}\left(m_{13}^{2}-m_{23}^{2}\right) \Gamma_{(0) K K}^{(1,0)}}{1-M}+\left(m_{12}^{2} \leftrightarrow m_{13}^{2}\right)
\end{gathered}
$$

References

R. Tourinho Aoude, P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multi-Meson Model applied to $D^{+} \rightarrow K^{+} K^{-} K^{+}$. PoS, CHARM2016:086, 2016.
R. T. Aoude, P. C. Magalhães, A. C. Dos Reis, and M. R. Robilotta. Multimeson model for the $D^{+} \rightarrow K^{+} K^{-} K^{+}$decay amplitude. Phys. Rev. D, 98(5):056021, 2018.
P. C. Magalhães, A. C. dos Reis, and M. R. Robilotta. Multibody decay analyses: A new phenomenological model for meson-meson subamplitudes. Phys. Rev. D, 102(7):076012, 2020.

