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Neutrino masses

Water Cherenkov, reactor, long-baseline experiments (SK, T2K, DayaBay,

KamLAND, NO�A...) provide a wealth of data

Forero, Tortola, Valle et al. (2006.11237)
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Other constraints

Neutrino-less-double-� decay

EXO (2019), GERDA (2020)

⟨m�⟩ ≲ (79 − 180) meV

Kinematic experiments

Mainz, Troitsk, KATRIN (2022)

m� < 0.8 eV

Cosmological limits

PLANCK (2018) lensing+BAO

∑
i m�i

< 0.12 eV

See talk by Forero
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An incomplete list...

⇒ Is CP a good symmetry of the lepton sector? If not, �?
NO�A, DUNE, Hyper-K

⇒ Do neutrinos follow a NH or IH mass spectrum?
DUNE, JUNO and Hyper-K

⇒ Are neutrinos Dirac or Majorana fermions?

⇒ If Majorana, at what scale is L broken?
Origin of neutrino masses

LEGEND (76Ge), DARWIN (135Xe), LHC

⇒ Do neutrinos (mass mechanism) are related with DM?
LHC

⇒ Do neutrinos (mass mechanism) have something to do with ΔB?

⇒ Do neutrino interactions involve some sort of BSM?

If so, what can we learn from neutrino scattering experiments?
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How relevant these questions are?

Ask an average “hardcore” BSM folk:

Neutrino physics is done, these questions are

marginal (irrelevant), in the best case

Ask an average “hardcore” neutrino folk

These questions are of the upmost relevance

in particle physics (physics)

For what is worth... My personal take:

Try to be as general as possible

Derive measurable predictions

Construct testable scenarios
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Dirac neutrino masses

ν N

〈Φ〉
⊗

mν = yEff 〈Φ〉

mν ∼ 0.1 eV ⇒ yEff ∼ 10
−12

Completions

〈Φ〉
⊗

ν N F F F

yEff ∼ 10
−12

⊗
〈S〉

⊗
〈Φ〉

⊗
〈S〉

........

yEff ∼ y
(

〈S〉
MF

)n

〈Φ〉 ∼ 10
−12

ν N

No experimental signal
Smallness “understood”

No testability possible!

Disproving Dirac neutrinos only possible via

the observation of ΔL = 2 processes (0���)



What we know so far

... What is left?

Origin of neutrino masses

● Dirac neutrino masses

● Majorana neutrino masses

● High scale approaches

● “Standard” variations

● Constructing potentially

testable models

● Testability: A

“proof-of-principle”

● What has been done?

● Systematization: An example

● Bottom line

What can we learn from

neutrino scattering?

Low domain: Case for CEvNS

Final remarks

D. Aristizabal, December 1, 2022 COMHEP-2022, Villa de Leyva, Col. - p. 10

Majorana neutrino masses

L L

〈Φ〉 ⊗ 〈Φ〉⊗

(
Meff

�

)
ij
∼ Cij

v2

Λ

“Natural” couplings (Cij) ∼ 1 point towards a GUT

lepton number-breaking scale Λ ∼ 1015 GeV

The high-energy picture

Tree level
ν

×
ν

⊗〈Φ〉 ⊗ 〈Φ〉

N N

Type-I

ν
×

ν

⊗〈Φ〉 ⊗ 〈Φ〉

T T

Type-III

ν ν

⊗

〈Φ〉
⊗

〈Φ〉

∆

Type-II
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High scale approaches

“Conventional wisdom”: Neutrino acquire their masses via the standard seesaw

ν νN

〈Φ〉 〈Φ〉

• •
λ λ

• MN ≫ ΛEW ⇒ O(λ) ∼ 1 mν ∼ 0.1 eV

• N → LH addresses n∆B ∼ 10−10

SO(10): Fermions ⊂ 10 ⊂ RHNs ⇒ Type-I seesaw

No possible experimental proof

☞ No direct prove possible given the large scale involved MN ∼ ΛGUT

☞ No indirect test possible:

{9|�ij |, 6 CP phases, 3 MN} versus {3 �ij , 3 CP phases, 3 m�i
, nΔB}

Deconstruction of Lagrangian parameters not possible
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“Standard” variations

Type-III as well as type-II seesaws are well motivated too

L L

〈Φ〉 ⊗ 〈Φ〉⊗

⇒

〈Φ〉 〈Φ〉

L LT

⊗ ⊗

L L

∆

⊗ ⊗

〈Φ〉 〈Φ〉

Type-III

Type-II

Motivation

Simplicity: Type-II and type-III seesaw’s are as simple as type-I

(number of parameters, new d.o.f...)

Theoretical: In minimal SU (5) GUT models:

Fermions: 5
∗

F
10F Higgs ∶ 5S 45S (b − � unification)

GUT breaking ∶ 24S Neutrino masses ∶ 24F
⏟⏟⏟

Type-I + Type-III

15S
⏟⏟⏟

Type-II
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Constructing potentially testable models

The neutrino mass matrix generated from an n − loop and dimension d diagram

(Bonnet, Hirsch et. al. 2012)

m� ∼ " ×
Y 2v2

Λ
×
(

Y 2

16�2

)n

×
(

v2

Λ

)d−5

Lower scale models

⇒ The neutrino mass matrix arises from higher-order loop diagrams

⇒ The neutrino mass matrix arises from higher-order effective operators

⇒ The neutrino mass matrix involves small parameters

⇒ Combinations...

Allowing for Y couplings in the range

[10−2, 1], some possibilties enable Λ ∼ ΛEW

Potential testabilty

at LHC!
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Testability: A “proof-of-principle”

Depending on the cutoff scale and the operator responsible for m�

some scenarios might be ruled out

LHC

Y�1

Y�10-2

Tree

1- loop

2- loop
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What has been done?

Model-dependent results

(An almost “infinite” list)

Loop-induced

Ext. scalar sectors: Babu-Zee (1988), Zee (1980)

Ext. scalar + fermion sector: Scotogenic (2006)

Hybrid tree+loop: A. Pilaftsis 1992

Higher operators

d = 7 (Babu et. al. 2009)

d ≥ 7+1-loop (Kanemura & Ota, 2010)

nothing

Slightly broken L

Inverse seesaw (Valle & Mohapatra, 1986)

Hambye et. al, 2009

Pilaftsis & Dev 2012,2013

Complete picture only possible

in model-independent approaches

Loop-induced Higher order

Eff. Op. approach

Babu & Leung (2001)

de Gouvea & Jenkins (2007)

Volkas et. al. 2012

Diagrammatic approach

1-loop: Hirsch et. al. 2012

Mixed: Pascoli et. al. 2012

2-loop: D.A.S et. al, 2014

3-loop: Cepedello et al, 2018

Winter et. al. 2005 (Non-SUSY)

Winter et. al. 2011 (SUSY)

Hirsch et. al. 2017 (1-loop d = 7)

no
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Systematization: An example

Tables with QNs for all genuine diagrams as well as results for all possible

two-loop integrals in: D.A.S, Dégee, Dorame and Hirsch, 2014

Using these results

X1 X2

X7 X5 X3

X6 X4

α = 2 and β = −3

❛
❛
❛
❛
❛
❛

X2
X1 1

X5 X7 X6 X3 X4

1 1 2
1

2
1

3

2 2 2
1 1

2
3 3

3 3 2
1

2
1

3 3

Y1 Y2 Y3 Y4 Y5 Y6 Y7

−1 + α −1 + β β −1 + β α− β −1 + α α

⊗

⊗

ν ν

〈H〉

〈H〉

S1

S2

Fc

Fb

Fa S3 S4

•

•
PL PL

• •

PTBM-3 model

Fields Fa Fb Fc S1 S2 S3 S4

SU(2)L 1 2 2 2 1 2 1

U(1)Y 1 5 −4 2 1 −4 −3

�MMs à la carte: Model construction becomes a computer algorithm exercise
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Bottom line

⇒ Systematization possible even at 3-loop and at

1-loop with higher order operators

⇒ The number of possible models is huge

⇒ Systematic classification of possible signals

is a complex task and likely to be of practical use...

⇒ Can low-intensity rare processes observables be of some utility?

⇒ They do add, but do not change the overall picture

Collider and LFV low-energy observables cannot

rule out ΛΔL≠0 < ΛGUT
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What can we learn from neutrino scattering?
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Energy domains

Neutrino cross sections switchoff or kick in

as a function of incoming neutrino energy
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Intermediate domain: QES and its NC counterpart

�
l
+ n → l

− + p+ �
l
+ p+ → l

+ + n0

νℓ

ℓ−

W−

p+

A A− 1

n

Nuclear environmental effects matter!

Pauli blocking

Fermi motion

Nucleon reinteractions

Modern Monte Carlo generators include these effects

Differences among outputs ∼ 10%. Theoretical uncertainties are substantial

Measurements at

MiniBOONE, �BooNE

Miner�a and T2K

∼ 20% uncertainty (syst.)

NP effects confronted with charged lepton

limits. If present at all, NP effects are way

below theoretical uncertainties

Look in the NC channel!
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NSI in elastic NC

 ∼ GF �a�(1 − 5)�bq
��

q

ab
q Z

p, n

νµ (ν̄µ)

p, n

νe (ν̄e)

Limits on NSI (CHARM, COHERENT) allow for ∼ 30% spread

Data can be used to test NSI (Kosmas & Papoulias, 1611.05069)
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Low domain: Case for CEvNS
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CE�NS

CE�NS occurs when the neutrino energy E� is such that nucleon amplitudes
sum up coherently ⇒ cross section enhancement

� ≳ RN ⇒ q ≲ 200 MeV

ER = q2∕2mN ⇒ E� ≃
√
Emax

R
mN∕2

E� ≲ 200 MeV

Freedman, 1974

d��

dER

=
G2

F

4�
Q2

SM
mN

(
1 −

ErmN

2E2
�

)
F 2(Er)
⏟⏟⏟

Form factor

Q2

SM
= [N − (1 − s2

W
)Z]2 ≃ N2

Helm, 1956
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CEvNS environments

Reactor (NUCLEUS, Dresden-II, CONUS)

U238

Pu239

Pu241
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Neutrino sources and CEvNS “regimes”

Decay-in-flight neutrino sources can as well be used

NuMI and LBNF

D.A.S et al. arXiv:2103.10857
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Entering the “high-energy” window requires a substantial amount of �’s in the low-enery tail

LBNF provides that!
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The �BDX-DRIFT detector

➪ Directional low pressure TPC detector

➪ Operates with CS2 (other gases possible CF4, C8H20Pb...)

➪ NRs mainly in sulfur induce ionization

➪ CS−
2

ions used to transport the ionization to the readout planes (MWPCs)
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Physics program

The combination of the LBNF neutrino beamline

and the �BDX-DRIFT defines a neutrino program

CEvNS measurements

Measurements in CS2, CF4, C8H20Pb...

... Complementary to CONUS (Ge), CONNIE (Si), COHERENT (Ar, CsI, NaI)

SM measurements

Measurements of sin2 �W at a new energy scale

... Complementary to DUNE measurements in electron channel

Measurements of neutron distributions in e.g. C, S, F, Pb...

Measurements of neutrino-nucleon elastic and QE scattering

BSM searches

Neutrino NSI, NGI, Dark-neutrino interactions, dark sectors
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Signals in CS2 and CF4

D.A.S et al. arXiv:2103.10857
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Measurements of Rn via CEvNS
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Neutron density distributions: Results

D.A.S et al. PRD, 104 (2021)

High-energy nature of the flux

⇒ Moderate dependence on the FF

⇒ Accounted for in signal uncertainty ∼ 10%

D.A.S et al. PRD, 104 (2021)
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Assessing rock neutrons
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Stage-I

✎ Use GENIE to generate final-state particles energy spectra

✎ Sample (randomly) (x, y, z) and propagate with the aid of GEANT4

⇒ n0 from the walls.

Stage-II

✎ Fire n0 from the wall and use GEANT4 to record energy deposited in

in veto and fiducial volume
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Rock neutron bckg vs signal

D.A.S. et al. arXiv:2210.08612

NuMI Low Energy (LE) mode

Exposure 10 m3 − year

D.A.S. et al. arXiv:2210.08612

Events pile up at 90◦

Signal-to-noise ratio: 2.5
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Rèsumè

⇒ In the next 10 years a large number of next-generation neutrino experiments

will provide a wealth of data

⇒ Some open questions will be certainly addressed (experimentally)

others will perhaps remain open for quite a while

⇒ Neutrinos have always surprised us, it could be that they still can...
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