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The LHC is a very jetty place

= Strongly interacting quarks and gluons produced in the LHC collisions hadronise and produce
a cascade of particles, which can be collected using some specialised algorithms to build what

we call “jets”
s More than 90% of physics analyses done in ATLAS use jets in one way or another

Standard Model Production Cross Section Measurements Status: February 2022
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The LHC is a very jetty place

Run: 329716

Event: 857582452
2017-07-14 10:48:51 CEST
Jets are objects reconstructed algorithmically from
« cuadri-vector inputs, such as calorimeter clusters,
iCks, truth particles

Constituents/
inputs
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The LHC is a very jetty place

Constituents/
inputs

= A jet can be proxy for quark/gluons but also for
_ other particles decaying to quarks/gluons, e.g.
Jet algorithm/ W/Z/Higgs bosons, top quarks.
radius = Small-radius jets are proxies for quark/gluon jets
= Large-R jets are often used to reconstruct
boosted particles decaying hadronically




The LHC is a very jetty place
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The LHC is a very jetty place

’ R=0.4
. 3 b-tagged jet
| BOOST! Ll
Constituents/ :
inputs
R=1.0
large-R
. ~3xR=0.4
Jet algorithm/ Boosted top
radius pT ~ 600 GeV
m ~ 180 GeV
/N
Calibration

= And studying its substructure we can identify which
Jet tagging particle is at the origin of the jet, e.g. is a quark or a
gluon? Or rather a vector boson? Is it Higgs or a top

quark?



The LHC is a very jetty place

ﬁ ATLAS
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The LHC is a very jetty place
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The LHC is a very jetty place
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Simulated Z — uju event

Pileup =140
There are many
challenges and the
large number of
additional interactions
(pile-up) is one of
them

PU treated for jets at
different levels:

= in the calibration

= at the inputs
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techniques for large-
radius jets



The LHC is a very jetty place

= ATLAS has achieved percent-level precision during Run-2

s Before being able to use these interesting and abundant objects in your analysis there are
many steps to take and experimental challenges to hadronic object reconstruction

= Today:
= Qur detector
s Jet performance overview (with focus on new ideas/developments for Run-3)
= Closing with a few analysis examples using jets

Mass of this two-jet event: 7 Tera-electron volt

CATLAS
L EXPERIMENT
http://atlas.ch

Run: 280673
Event: 1273922482
2015-09-29 15:32:53 CEST 10




Our tools
The LHC and ATLAS
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http://dpnc.unige.ch/seminaire/talks/loch.pdf

Jet constituents/inputs

» During Run-1 mostly calorimeter information was used to build our jets
= 3D clustering algorithm: topological clusters (connected groups of cells which are seeded

by a cell with |E| > 40)

» In Run-2 we started exploiting as well the information from the inner detector: good
angular resolution of tracker and good energy resolution from calorimeter

Particle Flow (PFlow) algorithm
= Track-calo cluster (TCC algorithm)

s Current state of the art is combination of TCC and Pflow
Unified Flow Objects (UFO)

= Let's briefly review each one of them
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PFlow algorithm

= Aims to improve jet reconstruction by using
tracks as they have better resolution at low p_

and can separate pile-up

s |t goes as:

s Tracks with good momentum resolution
extrapolated to calorimeter

s Energy deposits associated with selected tracks
are subtracted from the clusters

s If the remaining energy in the system is
consistent with the expected shower fluctuations
of a single particle’s signal, the topo-cluster
remnants are removed

= Relies heavily on understanding of single-
hadron response (E/p)

= In dense environments the cell-by-cell
substraction becomes difficult and PFlow
reverses itself to using EM-scale topoclusters in
this cases

» Performance degraded at high p_

= Baseline inputs/algorithm for R=0.4 jets

Track/topo-cluster

Eur. Phys. J. C 77 (2017) 466
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Track-calo cluster (TCC) algorithm

s Also match tracks to topoclusters
= At high p_topoclusters merge due to the

finite cell granularity in the Tile calorimeter

s TCC algorithm effectively uses tracks to split
up these large clusters

s Improving the mass (and sub-structure)
resolution at high p_

= An example of use: diboson
resonance searches... Good improvement
observed when using TCC!
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Unified Flow Objects (UFO)

Eur. Phys. J. C 81 (2021) 334

» UFO combines both TCC and PFlow: § [T
= TCC cluster splitting in dense environment case & ... L R .. |
where PFlow would disable itself = lfel<ie
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Jet calibration

= The sensitivity of searches and measurements that jets
depends on an accurate knowledge of the p_ and mass

responses of the detector
s Small-R jets: energy scale (JES) then position calibrated
s Large-R jets: calibrations for energy, position and mass (JMS)
as well _Truth Je’
. Reco Jet>

. Why we need it?

Calorimeter non-compensation (e/h > 1)

Dead material: energy deposited in non-instrumented region
Out of cone jet: particle shower outside the jet cone

Energy deposits below noise thresholds

Pile-up ,
Leakage: energy deposited beyond the calorimeter region %
(punch-through)

» How do we calibrate jets?
= A combination of MC and in-situ techniques that will be —
briefly summarised in this talk L5

Invisible Energy )

Hadronic showers are much more varied than EM showers



Jet calibration chain

From Matt LeBlanc Semi-Visible Jets
Workshop @ ETH Zurich, July 2022

Absolute MC-based
calibration

Corrects jet 4-momentum
to the gamde -level energy
scale.

oth the energy and
Reconstructed pr-density-based direction are calibrated. Residual in situ
jets pile-up correction calibration

g: 6, ? Jet finding applied to Applied as a function of Removes residual pile-up Global sequential A residual calibration
tracking- and/or event pile- u‘) p; density dependence, as a calibration Iy to d.

' I
calonmeter based inputs. and jet area. function of u and N, 'st: ‘c’gr’r%%to fgrydcta?a/r%a
Reduces flavour dependence differences.

and energy leakage effects
using calorimeter, track, and
muon-segment variables.

ATLAS 2007.02645 (R=0.4), 1807.09477 (R=1.0)

Residual in situ
calibration

Groomed large-R jets

E, n & m calibration (LCWHJES+MS scale)

Calorimeter energy Large-R jet Ungroomed large-R jets laggraomin Groomed large-R jets
clusters (LCW scale) reconstruction (LCW scale) 8 8 (LCW scale)

Large-R jets are recon- Soft subjets are removed A correction to the jet Residual correction
structed using the anti-k, from the reconstructed energy, pseudorapidity determined using in situ
algorithm with R = 1.0. jets. and mass is derived from  measurements to bring
g-’ o MC to bring the data in agreement with
el L reconstructed jet to the MC. Applied only to data.

particle jet scale.

s The jet calibration sequence corrects for pile-up, restores <pT“”'°°/pT"”e> = 1 with MC-based

correction, improves the resolution, and then corrects the response in data to match that in MC
s Many steps which need to be performed sequentially!

17



Jet calibration: Absolute MC calibration
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s The jet response gets closer to 1 after the absolute MC calibration

s Particles only included in truth-jet reconstruction if they will deposit energy in the
calorimetry systems (invisibles, muons excluded)

From Matt LeBlanc Semi-Visible Jets
Workshop @ ETH Zurich, July 2022
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Jet calibration: Global Sequential Calibration

The scale depends on some of the visible features of the jet eg.

s fraction of energy in a calo layer (fTile0O is sensitive to energy in dead material)
s number of tracks (is sensitive to quark vs gluon nature)
s charged fraction, etc., (in Pflow the charged fraction is calibrated
The resolution can be improved by removing these dependencies

Currently, this is done sequentially for 6 variables, resulting in a significantly better resolution

A new DNN-based version of this calibration is being commissioned now. It uses
additional jet and event information and takes into account correlation between these variables
s Greater improvements in the jet resolution over the traditional GSC approach
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Jet calibration: in-situ steps

Before in situ After in situ
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Jet calibration: in-situ steps

s The final jet scale correction consists of: using di-jets to correct scale vs n, then a
combination of Z + jet, y+jet and multi-jet balance to get the final correction

s There are a few other steps for the in situ jet resolution: Use dijet event imbalances,
together with random cones to constrain the noise term

In situ JES In situ JMS

"Relative" "Absolute"

Z+jet
balance

—

In situ JES ——— ) In situ JES In situ JMS
@ COombination bul Hf= combination combination
(two inputs) glanee /Wl (three inputs) (two inputs)
ra

—

Jet after

MC-based Dijet

calibration eta-intercalib Photon-Hjet

balance

Fully Fully
calibrated calibrated

Taken from Steven Schramm R=0.4 jet R=1.0 jet

{s=13TeV, 80 fb™" ATLAS
Anti-k, R = 0.4 (PFlow+JES)

1.2
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S 400 -
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. . S 065 Multijet oy ]
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: : 0 04| -
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Jet calibration: flavour and modelling uncertainties

s Recent developments will allow us to improve even more our jet calibration
uncertainties

s Previously the flavour treatment was based on the sample composition and the difference in
response of gluon initiated jets between different generators

s Recent calibrations now available to remove this effect when comparing generators in
analyses - see > 30% reduction in Pythia-Herwig uncertainties in first examples!

s This will be very useful for many analyses for which the jet flavour uncertainties were

dominant
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An analysis example: jet cross-section measurements

s The latest ATLAS inclusive jet and di-jet cross section measurement was performed using
the 2015 data collected covering the p_range from 100 GeV to 3.5 TeV

= Topocluster jets reconstructed with anti-k R=0.4 jets were used

s The main uncertainties for this analysis comes from the jet calibration
s Improvements in the jet collection and flavour uncertainties will be very beneficial
for this analysis! And for many others...
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Jet tagging

s What is the origin of a given jet? Is it coming from
a gluon or a quark? Could it be from an hadronically
decaying W/Z/Higgs boson or a top with a high
Lorentz boost?

s ATLAS has developed several kind of taggers in
the last years taking advantage of the characteristic
internal substructure of the jets depending on
their origin S

) arXiv:1909.12285

s Searches and measurements at the LHC are
probing progressively higher energy regimes and
they benefit a lot from these taggers for high p_ jets
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Jet tagging

s |et's focus on the case of discriminating

between W/Z/H/top vs QCD jet
s Many multivariate taggers being used at ® , '
the moment with good performance /8 \( ) Tageing W
s First taggers used high level features '
(e.g energy correlators) Y %

s Modern taggers use low level inputs (4-

vector information
) H—bb vs QCD tagging, making extensive

use of tracking and vertexing information
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Jet tagging: how do we calibrate the taggers?

Eur. Phys. J. C 79 (2019) 375

s Correct the tagger >
efficiency in MC to match % 7 W
the one in data 1

s For W/top taggers
s Primarily look at top-

antitop events for signal F VA T T pmmamsems | & OSEATAS T e
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An analysis example: boosted H->bb

s Signal-to-background ratio increases with Higgs

boson p_

s Focus on the VH, H—bb and V—leptons final

state

s The use of boosted H—taggers allowed to
reach higher transverse momentum and their
combination increase the precision and knowledge
of this channel (ATLAS-CONF-2021-051)
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https://arxiv.org/abs/2008.02508
https://arxiv.org/abs/2008.02508

Summarising

= Jet reconstruction, calibration and tagging important for a more precise physics in the
ATLAS experiment

= Great deal of improvements in the jets world during Run-2 and the LS2
= Evolution of reconstruction algorithms from Topoclusters (Calorimeter-only) to Pflow and
UFO (tracking+calorimeter)
s Percent-level uncertainties across wide kinematic range for the jets calibration
= Boosted jet tagging constantly improving discrimination

= Also showed the direct impact of the work on jet performance on the analysis
s The success of an HEP experiment relies not only on the analysis design but on detector
operations and performance work

= Run 3 brings more luminosity at slightly higher energy but to do better than
1A/luminosity we need to bring new strategies to improve the uncertainties

= Lots of work ongoing in that direction, stay tuned!
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Run-3 just started
The LHC and ATLAS

= And with it plenty of opportunities opened, more jets and more fun physics
s Looking already at early Run-3 data!
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