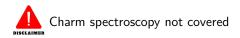
Charm mixing, CPV and Rare decays

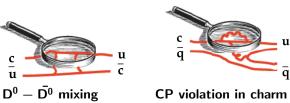
Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)


INP Krakow

07 September, 2022 PIC 2022 Tbilisi State University, Georgia

Outline

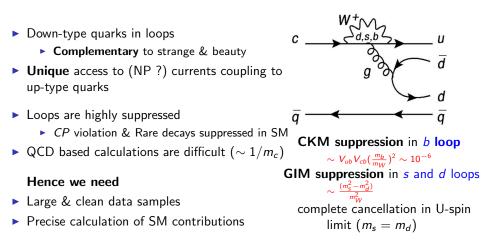
- Charm mixing, CP violation and Rare Decays:
 - Why important and challenging?
- Why charm is special?
- Where and how is charm studied?
- Mixing and CP violation:
 - Introduction & news
- Rare Decays:
 - Current status & news
- Summary



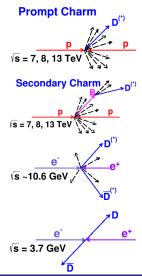
Charm - Main Goals

- Test the robustness of the Standard Model
- Find and identify New Physics beyond SM

Where to look?


- Suppressed or Forbidden decays in SM
- Rare processes involving loop diagrams:

New Particles may affect the loops


C 11

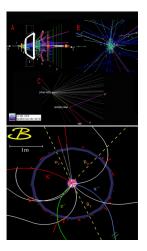
Charm - Key Features

Charm - From Experiments

collider	Exp	√s	Lumi	$\sigma(c\bar{c})$	N(cc̄)	
	prompt charm					
hadron	LHCb	13 TeV	6/fb	2.6 mb	16×10 ¹²	
		7, 8 TeV	3/fb	1.4 mb	4×10 ¹²	
	CDF	2 TeV	10/fb	0.1 mb	2.3×10 ¹¹	
	B-Factories continuum char			m charm		
€⁺€-	Belle	10.6 GeV	1000/fb	1.3 nb	1.3×10 ⁹	
	BaBar		550/fb		0.7×10 ⁹	
	Belle2		200/fb		0.3×10 ⁹	
	Charm Factories @ DD threshold					
	BESIII	3.7 GeV	3/fb	3 nb	20×10 ⁶	
	Cleo-c		0.8/fb		5×10 ⁶	
<i>LHCb</i> ГНСр			AR Z			

Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration) Charm mixing, CPV and Rare decays

Charm - Characteristics


- ► Large cross-section
- Busy environment
- Non-trivial triggers with $\epsilon \sim \mathcal{O}(10^{-3} 10^{-2})$
- Decays involving neutrals (γ, ν) are difficult
- D^0 flight distance ~ 10 mm, $\sigma(t)$ ~ 50 fs

- Cleaner environment
- No trigger, $\epsilon \sim 100\%$
- Good for decays involving neutrals
- ► D^0 flight distance ~ 200 500 μ m, $\sigma(t)$ ~ 250 fs (150 fs for Belle II)

- Background free charm production
- No boost for $D \Rightarrow$ No time measurement
- Quantum-correlated charm production; $\Psi(3770) \rightarrow D\bar{D}$ and $CP(D) \times CP(\bar{D}) = -1$

Mixing and CP violation

Why do Neutral Mesons Mix?

► Flavour eigenstates $D^0(c\bar{u}) \ \bar{D^0}(\bar{c}u) \neq$ Mass eigenstates $D_1(m_1, \Gamma_1)D_2(m_2, \Gamma_2)$

$$|\mathbf{D}_{1,2}\rangle = \mathbf{p} |\mathbf{D}^{0}\rangle \pm \mathbf{q} |\mathbf{\bar{D}}^{0}\rangle; |\mathbf{p}|^{2} + |\mathbf{q}|^{2} = \mathbf{1}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } \mathbf{D}_{1,2} \rightarrow \mathbf{f}$$

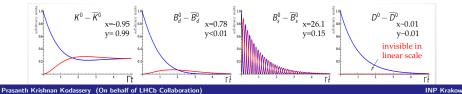
$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } \mathbf{D}_{1,2} \rightarrow \mathbf{f}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } \mathbf{D}_{1,2} \rightarrow \mathbf{f}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } \mathbf{D}_{1,2} \rightarrow \mathbf{f}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } \mathbf{D}_{1,2} \rightarrow \mathbf{f}$$

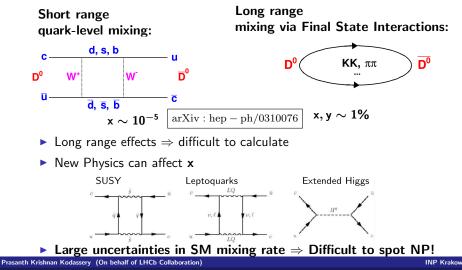
$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } D_{1,2} \rightarrow \mathbf{f}$$


$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } D_{1,2} \rightarrow \mathbf{f}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } D_{1,2} \rightarrow \mathbf{f}$$

$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } D_{1,2} \rightarrow \mathbf{f}$$

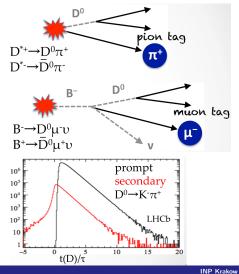
$$\downarrow^{t=0 \text{ production of } D^{\circ} \text{ mixing } D^{\circ} \Leftrightarrow \mathbf{\bar{D}}^{\circ} \text{ decay of } D_{1,2} \rightarrow \mathbf{f}$$


Probability that initial flavour (t = 0) changed/unchanged at time t

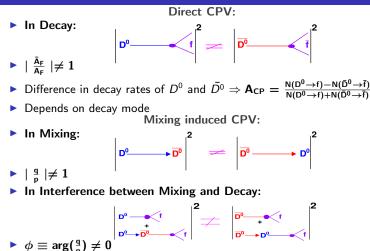
Charm mixing, CPV and Rare decays

Understanding x and y

Standard Model contributions:

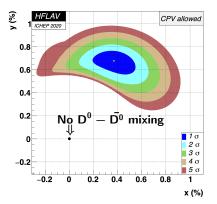


How to find the flavour of D at its production ?


- Tag the flavour at the production
 - Find if D^0 or $\overline{D^0}$ produced at t = 0
- ▶ Mixing changes flavour at any time t
 Prompt Charm: pp → D*±
- $D^0/\bar{D^0}$ from soft-pion charge

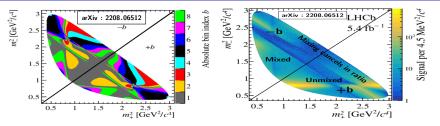
Secondary Charm: $pp \rightarrow B \rightarrow D$ $D^0/\bar{D^0}$ from muon charge

- Prompt Charm used at B-factories
- LHCb uses both data samples
- ▶ Full coverage of *D* decay time


CP violation - Types & Observables

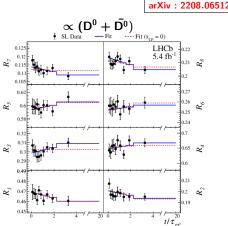
- Difference in decay rates as function of D decay time
 - Independent of decay mode

Mixing & CPV: Time Dependent Studies


- Mixing & mixing induced CPV universal
- Don't depend on the decay mode
- Only in neutral D decays
- $D^0 \overline{D^0}$ mixing observed in 2013 by LHCb^[1]
- Significant non-zero value of x measured for the first time in 2021

¹PRL **110**, 101802 (2013)

Model-independent Bin-Flip approach PRD 99, 012007 (2019)


- Good sensitivity to (x, y, q, p) from interference between resonances contributing D⁰ and D
 [¯] decays
- Golden mode: overlapping resonances, rich dynamics, and large statistics
- ▶ No need for Dalitz model or precise time & Dalitz acceptance \Rightarrow Hard in LHCb
- ► Uses strong phases between $\mathbf{D}^0, \overline{\mathbf{D}^0} \to \mathbf{K}_{\mathsf{S}}^0 \pi^+ \pi^-$ from CLEO-c & BESIII $\Rightarrow c_b = \cos \Delta \delta, s_b = \sin \Delta \delta$ [PRD 101, 112002 (2020)] [PRL 122, 231802 (2019)]
- Divide Dalitz plot into $\pm b$ bins; D decay time into j bins

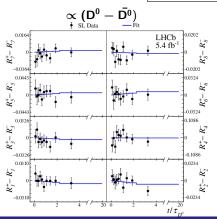
$$\left| \mathbf{R}_{\mathbf{bj}}^{\pm} \simeq \mathbf{r}_{\mathbf{b}} - t_{j} \sqrt{\mathbf{r}_{\mathbf{b}}} \left[(1 - \mathbf{r}_{\mathbf{b}}) \, \mathbf{c}_{\mathbf{b}} \mathbf{y} - (1 + \mathbf{r}_{\mathbf{b}}) \, \mathbf{s}_{\mathbf{b}} \mathbf{x} \right] \right|$$

$$\mathbf{r_b} = ratio w/o mixing(t = 0)$$

▶ LHCb Run 2 Data, **3.6 M** secondary charm $(B \rightarrow D^0 \mu \nu)$ signal events

arXiv : 2208.06512 (Submitted to PRD)

- \mathbf{R}^{\pm} changes with time \Rightarrow **Mixing**
- Simultaneous χ^2 fit to all bins:
 - Common Mixing/CPV parameters
 - Constrain strong phases


$$\begin{aligned} x &= \left(\begin{array}{c} 4.6^{+1.5}_{-1.6} \right) \times 10^{-3} \\ y &= \left(12.4^{+3.2}_{-3.3} \right) \times 10^{-3} \end{aligned}$$

- $x \text{ is } \sim 3\sigma$ away from zero!
- Statistically dominated!

▶ LHCb Run 2 Data, **3.6 M** secondary charm $(B \rightarrow D^0 \mu \nu)$ signal events

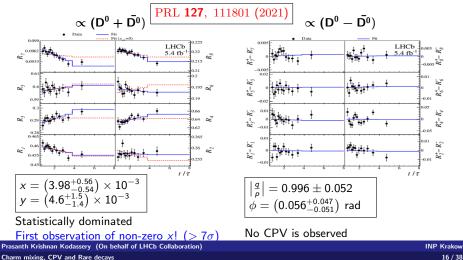
arXiv : 2208.06512 (Submitted to PRD)

• $R^+ \neq R^- \Rightarrow$ Mixing induced CPV

- Simultaneous χ^2 fit to all bins:
 - Common Mixing/CPV parameters
 - Constrain strong phases

$$ig| rac{q}{p} ig| = 1.21^{+0.21}_{-0.15} \ \phi = ig(-0.132^{+0.088}_{-0.120}ig) \ {
m rad}$$

No CPV is observed


Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)

Charm mixing, CPV and Rare decays

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Bin-Flip: Results from prompt charm sample

- ▶ LHCb Run 2 Data, **30.5 M** prompt charm $(D^* \rightarrow D^0 \pi)$ signal events
- Statistically independent, covering different D decay times

Measurement of $y_{CP} - y_{CP}^{K\pi}$

PRD 105, 092013 (2022)

$$y_{CP} \propto y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right)$$

$$\mathbf{y_{CP}} = \mathbf{y}$$
 if no CPV $\left(\phi = 0 \& \left|\frac{q}{p}\right| = 1\right)$

Cabibbo Favoured

Mixina

$$\mathbf{f} = \mathbf{K}^{+}\mathbf{K}^{-}, \pi^{+}\pi^{-} \sqrt{\mathbf{R}_{\mathsf{D}}} = \sqrt{\frac{\mathbf{B}(\mathbf{D}^{0} \rightarrow \mathbf{K}^{+}\pi^{-})_{\mathsf{DCS}}}{\mathbf{B}(\mathbf{D}^{0} \rightarrow \mathbf{K}^{-}\pi^{+})_{\mathsf{CF}}}} \approx 6\%$$

 $\mathbf{y_{CP}^f} - \mathbf{y_{CP}^{K\pi}} \approx y \left(1 + \sqrt{R_D}\right);$

•
$$y_{CP}^{K\pi} \approx -0.4 \times 10^{-3}$$

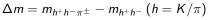
Direct constraint on y

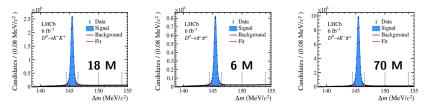
doubly

K⁻π⁺

17 / 38

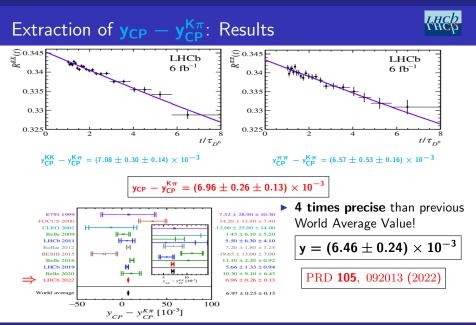
(RS)


Extraction of $\mathbf{y}_{CP} - \mathbf{y}_{CP}^{K\pi}$

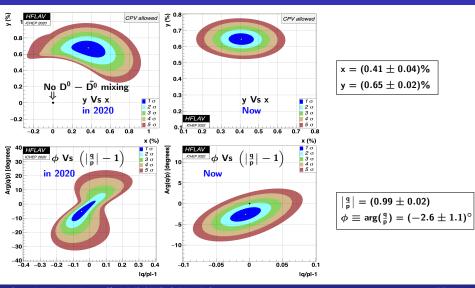

PRD 105, 092013 (2022)

• Measured from fits to decay time ratios $R^{f}(f = K^{+}K^{-}, \pi^{+}\pi^{-})$

$$R^{f}(t) = \frac{N\left(D^{0} \to f, t\right)}{N\left(D^{0} \to K^{-}\pi^{+}, t\right)} \propto e^{-\left(y_{CP}^{f} - y_{CP}^{K\pi}\right)\frac{t}{\tau_{D^{0}}}} \times \underbrace{\frac{\epsilon\left(f, t\right)}{\epsilon\left(K^{-}\pi^{+}, t\right)}}_{\text{Efficiencies}}$$


LHCb Run 2 data, prompt charm

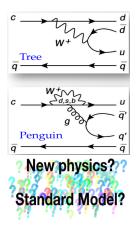
Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)


Charm mixing, CPV and Rare decays

Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)

19/38

Mixing & CPV from global fit - Past Vs Present

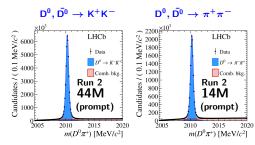


Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)

Charm mixing, CPV and Rare decays

Direct CPV (CPV in decays)

- Time independent measurements
- ▶ Depends on decay mode → look at many modes
- Interference between Tree & Penguin (SCS decays)
- Penguin in charm is tiny in SM
- Only significant observation of CPV is
 ΔA_{CP} = (-15 ± 3) × 10⁻⁴
 PRL 122, 211803 (2019)



- Simple & sensitive measurement
- All nuisance asymmetries cancel out in the difference
- Full LHCb dataset (Run 1 + Run 2)

 $\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$

<u>5.3 σ </u> from zero!

LHCB-PAPER-2022-024 (in preparation)

 \blacktriangleright A_{CP} and a_f^d related as:

$$\mathsf{A}_{\mathsf{CP}}(\mathsf{f})pprox \mathsf{a}_{f}^{d}+rac{\langle t
angle_{f}}{ au_{D^{0}}}\Delta Y$$

Average Decay time Related to Mixing parameters^[2]

- ▶ Need to measure $A_{CP}(D^0 \to K^+K^-)$ and $A_{CP}(D^0 \to \pi^+\pi^-)$ to understand the nature of observed CPV in charm
- Measure A_{CP} ($D^0 \rightarrow K^+K^-$) and retrieve Direct CPV parameters $\mathbf{a}_{\mu\nu}^{\mathbf{d}}$ and $\mathbf{a}_{\mu\nu}^{\mathbf{d}}$ from the combination with ΔA_{CP}

²PRD **103**, 053008 (2019)

• LHCb Run 2 data, prompt charm LHCB-PAPER-2022-024 (in preparation) The measured asymmetry (A_{raw}) includes both physics and detector effects: $A_{raw} = A_{CP} + A_{P} + A_{P}$

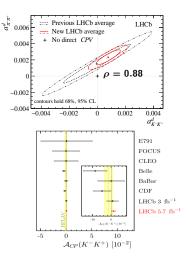
$$\underbrace{\underbrace{N(D^0 \rightarrow K^+ K^-) - N(\bar{D^0} \rightarrow K^+ K^-)}_{N(D^0 \rightarrow K^+ K^-) + N(\bar{D^0} \rightarrow K^+ K^-)}$$

Asymmetry of our interest Detection asymmetry Production asymmetry of D^* $\sigma(K^-) > \sigma(K^+)$ $\sigma(D) \neq \sigma(\overline{D})$ B-factory experiments: $e^+e^- \rightarrow \gamma/Z^*$ interference = A_{FB}

$$A_{CP}(D^0 \to K^+K^-) = [6.8 \pm 5.4 \pm 1.6] \times 10^{-4}$$

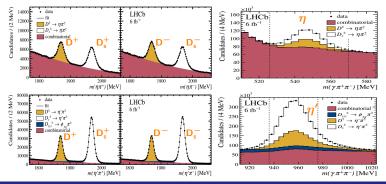
A_{CP} in $D^0 \rightarrow K^+ K^-$ decays: Results

LHCB-PAPER-2022-024 (in preparation)


$$\Delta A_{CP} = a^{d}_{KK} - a^{d}_{\pi\pi} - \frac{\langle t \rangle_{KK} - \langle t \rangle_{\pi\pi}}{\tau_{D^{0}}} \Delta Y$$
PRL 122, 211803 (2019)
PRD 104, 072010 (2021)

Run 1 + Run 2 Combined:

$$\begin{array}{l} a^d_{\mathsf{K}^+\mathsf{K}^-} = (7.7\pm5.7)\times10^{-4} \\ a^d_{\pi^+\pi^-} = (23.2\pm6.1)\times10^{-4} \end{array}$$


First evidence of direct CPV in $D^0 \rightarrow \pi^+\pi^-$ decays at <u>3.8 σ </u>!

The most accurate measurement, still statistically dominated!

CP violation in $D^+_{(s)} o \eta \pi^+$ & $D^+_{(s)} o \eta' \pi^+$ decays

- LHCb Run 2 dataset arXiv:2204.12228 (submitted to JHEP)
- $D^{\pm}_{(s)} o \eta(')\pi^{\pm}$, where $\eta(') o \pi^{+}\pi^{-}\gamma$
- Nuisance asymmetries are subtracted using control channels
- $A_{CP} \Rightarrow$ from simultaneous fit between $m(\pi^+\pi^-\gamma)$ and $m(\eta(\prime)\pi^{\pm})$
- ▶ 0.5 M (1 M) $D_{(s)}^{\pm} \rightarrow \eta' \pi^{\pm}$ & 1.1 M (1.3 M) $D_{(s)}^{\pm} \rightarrow \eta \pi^{\pm}$ signal events

Prasanth Krishnan Kodassery (On behalf of LHCb Collaboration)

Charm mixing, CPV and Rare decays

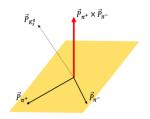
инсь

Measured A_{CP} values in each decay channel: arXiv:2204.12228 (submitted to JHEP)

$$\begin{split} \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^+ \to \eta \pi^+) &= (0.34 \pm 0.66 \pm 0.16 \pm 0.05)\%^{(*)} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^+_{\mathsf{s}} \to \eta \pi^+) &= (0.32 \pm 0.51 \pm 0.12)\% \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^+ \to \eta' \pi^+) &= (0.49 \pm 0.18 \pm 0.06 \pm 0.05)\%^{(*)} \\ \mathsf{A}_{\mathsf{CP}}(\mathsf{D}^+_{\mathsf{s}} \to \eta' \pi^+) &= (0.01 \pm 0.12 \pm 0.08)\%^{(*)} \end{split}$$

- (*)Most precise measurement up to date!
- Results are consistent with no CP violation
- Statistically limited

CP violation in $D^0 o K^0_S K^0_S \pi^+ \pi^-$ decays



PRD 84, 096013 (2011)

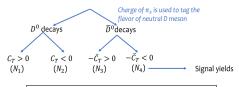
arXiv:hep-ph/0107102

- Search for CPV using *T*-odd observable: $C_{T} = \vec{p}_{K_{S}^{0}} \cdot (\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}})$
- Construct Asymmetries A_T (for D^0) and \bar{A}_T (for \bar{D}^0) with

$$A_T \xrightarrow{\mathsf{CP}} \bar{A}_T, \ C_T \xrightarrow{\mathsf{C}} C_T; \ C_T \xrightarrow{\mathsf{P}} -\bar{C}_T$$

$$(\mathbf{A}_{\mathsf{T}})_{\mathsf{D}^0} = \frac{N_1(C_T > 0) - N_2(C_T < 0)}{N_1(C_T > 0) - N_2(C_T < 0)}; \quad (\bar{\mathbf{A}}_{\mathsf{T}})_{\bar{\mathbf{D}}^0} = \frac{N_3(-\bar{C_T} > 0) - N_4(-\bar{C_T} < 0)}{N_3(-\bar{C_T} > 0) - N_4(-\bar{C_T} < 0)};$$

The difference
$$\mathbf{a}_{CP}^{\mathsf{T}} = \frac{1}{2} \left[\left(\mathsf{A}_{\mathsf{T}} \right)_{\mathsf{D}^{0}} - \left(\bar{\mathsf{A}}_{\mathsf{T}} \right)_{\bar{\mathsf{D}}^{0}} \right]$$

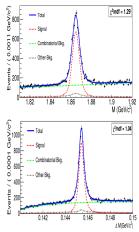

is sensitive to CPV

- Remove effects from strong phases
- Complementary measurement to A_{CP}

CP violation in $D^0 \to K^0_S K^0_S \pi^+ \pi^-$ decays: Results

arXiv:2207.07555 [hep-ex] (submitted to PRDL)

- Belle dataset of integrated luminosity 922 fb⁻¹
- a^T_{CP} from 2D simultaneous fit between M_D and Δm to four categories:



$$\mathbf{a}_{\mathsf{CP}}^{\mathsf{T}} = \left[-1.95 \pm 1.42^{+0.14}_{-0.12}
ight] \%$$

- ► First measurement of a^T_{CP} for the mode
- Result is consistent with no CPV

$$\mathsf{A}_{\mathsf{CP}} = \left[-2.51 \pm 1.44^{+0.35}_{-0.52}
ight]\%$$

6095 ± 95 events

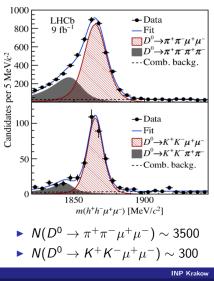
Consistent with no CPV

Rare Decays

Spectrum of Charm Decays

SM null tests with search for rare and forbidden charm decays

$D^0 ightarrow \mu^+ e^-$	$D_{(s)}^+ \rightarrow \pi^+ l^+ l^-$	$D^0 \rightarrow \pi^- \pi^+ V(\rightarrow ll)$	$D^0 \to K^{*0} \gamma$
$D^0 \rightarrow pe^-$	$D^+ \to K^+ l^+ l^-$	$D^0 \to \rho \ V(\to ll)$	$D^0 \rightarrow (\phi, \rho, \omega) \gamma$
$D^+_{(s)} \rightarrow h^+ \mu^+ e^-$	$D^0 \rightarrow K^- \pi^+ l^+ l^-$	$D^{0} \rightarrow K^{+}K^{-}V(\rightarrow ll)$ $D^{0} \rightarrow \phi V(\rightarrow ll)$	D^+ , (ϕ, ρ, ω)
(3)	$D^0 \rightarrow K^{*0}l^+l^-$	$D^0 \to \phi \ V(\to ll)$	$D_{\rm s}^{\rm r} \to \pi^{\rm r} \phi(\to ll)$

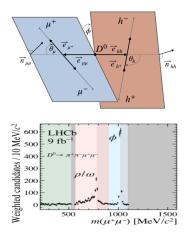

0 10 ⁻¹⁵ 1	10 ⁻¹⁴ 10 ⁻¹³ 10 ⁻¹² 10 ⁻¹¹ 10 ⁻¹⁰	10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷	10-6 10-5 10-4
		10 10 10	10 10 10
$D^+_{(s)} \to h^- l^+ l^+$ $D^0 \to X^0 \mu^+ e^-$ $D^0 \to X^{} l^+ l^+$	$D^0 \rightarrow ee \qquad D^0 \rightarrow$	$ \begin{array}{ll} \pi^{-}\pi^{+}l^{+}l^{-} & D^{0} \to K^{+}\pi^{-}V(\to) \\ \rho & l^{+}l^{-} & D^{0} \to \overline{K}^{*0}V(\to)ll_{\mu} \\ K^{+}K^{-}l^{+}l^{-} & D^{0} \to \gamma\gamma \end{array} $	$) D^0 \to K^- \pi^+ V(\to ll)$

$D^0 ightarrow h^+ h^- \mu^+ \mu^-$ decays

PRL 128, 221801 (2022)

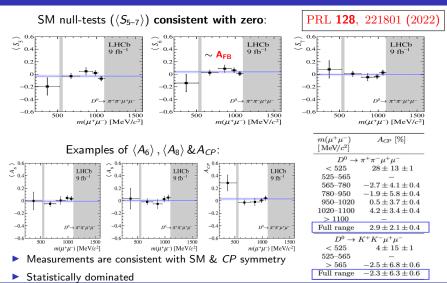
- ► Four-body decays → larger branching fractions than 2-body decays, rich observables
- First observation of rarest charm decays using LHCb Run 1 data
 PRL 119 181805 (2017)
 - Analysis done in $m(\mu^+\mu^-)$ regions
- Resonance tail may contribute
- Branching Fractions aren't clean test of SM
- First full angular analysis with LHCb
 Run 1 + Run 2 data
- ▶ Resonance regions \rightarrow SM null-tests

$D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays: Observables



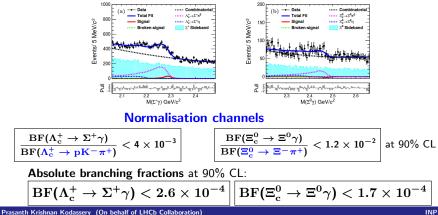
PRL 128, 221801 (2022)

Five independent kinematic variables:


$$p^2 \left[\mathbf{m}(\mathbf{h^+h^-}) \right], q^2 \left[\mathbf{m}(\boldsymbol{\mu^+\mu^-}) \right], \theta_{\mu}, \theta_{h}$$

and ϕ

- Differential decay rate is expressed as the sum of nine angular observables I₁₋₉
- CP average & Asymmetry:


$D^0 ightarrow h^+ h^- \mu^+ \mu^-$ decays: Results

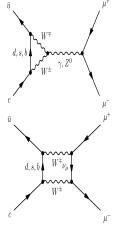
Search for $\Lambda_c^+ \to \Sigma^+ \gamma$ and $\Xi_c^0 \to \Xi^0 \gamma$

Charm mixing, CPV and Rare decays

INP Krakow

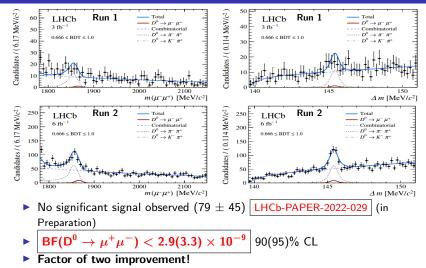
$D^0 ightarrow \mu^+ \mu^-$ decays

LHCb-PAPER-2022-029 (in Preparation)


- ► FCNC + Helicity suppression [BF ~ O(10⁻¹²)]
- Key in constraining NP
 - Lepto-quarks in tree-level
- ▶ Both short distance $[\mathcal{O}(10^{-18})]$ & long distance $[\mathcal{O}(10^{-11})]$ contributions within SM

 $\mathrm{PRD}\, 93\,074001\,(2016)$

► Current upper limit BF(D⁰ → $\mu^+\mu^-$) < 6.2 × 10⁻⁹ 90% CL PLB **725** 16 (2013)


Analysis Strategy:

- LHCb Run 1 + Run 2 dataset, prompt charm
- Simultaneous fit in three intervals of BDT output variable
- ▶ Normalisation channels: $D^0 \to \pi^+\pi^-$ and $D^0 \to K^-\pi^+$ decays

$D^0 ightarrow \mu^+ \mu^-$ decays: Results

Most stringent limit on FCNC in charm

Summary

- Reaching an era of increasing precisions in charm measurements
- Non-zero mass difference between charm mass eigenstates now firmly established
- Evidence of Direct CPV in $D^0 \rightarrow \pi^+\pi^-$ decays
- ▶ Upper Limit for BF(D⁰ → $\mu^+\mu^-$) is below $B^0_s → \mu^+\mu^-$
- Many charm analyses using LHCb Run 2 data ongoing
- More data coming from Belle II & LHCb upgrade; exciting times ahead

Thank you

Backup slides

Angular observables for $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ decays

Differential decay rate is expressed as a sum of nine angular coefficients I₁₋₉ as

$$\frac{d^5\Gamma}{dp^2dq^2d\vec{\Omega}} = \frac{1}{2\pi}\sum_{i=1}^9 c_i(\theta_\mu,\phi)I_i(q^2,p^2,\cos\theta_h),$$

where
$$\Omega \equiv (\cos \theta_{\mu}, \cos \theta_{h}, \phi)$$
 and
 $c_{1} = 1, \qquad c_{2} = \cos 2\mu, \qquad c_{3} = \sin^{2} \theta_{\mu} \cos 2\phi,$
 $c_{4} = \sin 2\mu \cos \phi, \qquad c_{5} = \sin \theta_{\mu} \cos \phi, \qquad c_{6} = \cos \theta_{\mu},$
 $c_{7} = \sin \theta_{\mu} \sin \phi, \qquad c_{8} = \sin 2\theta_{\mu} \sin \phi, \qquad c_{9} = \sin^{2} \theta_{\mu} \sin 2\phi$

I₁ provides normalisation factor

$$\begin{split} &I_2 = \int_{-\pi}^{-\pi} d\phi \left[\int_{-\pi}^{-\Omega > 3} d\cos \theta_{\mu} + \int_{-\Delta}^{0} d\cos \theta_{\mu} - \int_{-\Delta \pi}^{0} d\cos \theta_{\mu} \right] \frac{d\phi^2}{dq^2} \frac{d^2 \Gamma}{dq^2} d\Omega^2, \\ &I_3 = \frac{3\pi}{8} \left[\int_{-\pi}^{-\frac{\pi}{2}} d\phi - \int_{-\pi}^{\frac{\pi}{2}} d\phi + \int_{\pi}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{\frac{\pi}{2}} d\phi \right] \int_{-\pi}^{1} d\cos \theta_{\mu} \frac{d^2 \Gamma}{dq^2} \frac{d^2 \Gamma}{dq^2} d\Omega^2, \\ &I_4 = \frac{3\pi}{8} \left[\int_{-\pi}^{\frac{\pi}{2}} d\phi - \int_{-\pi}^{-\pi} d\phi - \int_{\pi}^{\pi} d\phi \right] \int_{-\pi}^{1} d\cos \theta_{\mu} \frac{d^2 \Gamma}{dq^2 dq^2} d\Omega^2, \\ &I_5 = \left[\int_{-\pi}^{\pi} d\phi - \int_{-\pi}^{-\pi} d\phi - \int_{\pi}^{\pi} d\phi \right] \int_{-\pi}^{1} d\cos \theta_{\mu} \frac{d^2 \Gamma}{dq^2 dq^2 d\Omega^2}, \\ &I_6 = \int_{-\pi}^{\pi} d\phi \left[\int_{0}^{1} d\cos \theta_{\mu} - \int_{-\pi}^{0} d\cos \theta_{\mu} \right] \frac{d^2 \Gamma}{dq^2 dq^2 d\Omega^2}, \\ &I_7 = \left[\int_{0}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \int_{-\pi}^{1} d\cos \theta_{\mu} \frac{d^2 \Gamma}{dq^2 dq^2 d\Omega^2}, \\ &I_8 = \frac{3\pi}{8} \left[\int_{-\pi}^{\pi} d\phi - \int_{-\pi}^{0} d\phi \right] \left[\int_{0}^{1} d\cos \theta_{\mu} - \int_{-\pi}^{0} d\phi \cos \theta_{\mu} \right] \frac{d^2 \Gamma}{dq^2 dq^2 d\Omega^2}, \\ &I_8 = \frac{3\pi}{8} \left[\int_{-\pi}^{\pi} d\phi + \int_{0}^{1} d\phi - \int_{-\pi}^{0} d\phi - \int_{-\pi}^{0}$$

Normalised angular observables for $D^0 ightarrow h^+ h^- \mu^+ \mu^-$ decays

The normalised and integrated observables $\langle I_i \rangle$ are defined as

$$\begin{split} \langle I_{2,3,6,9} \rangle &= \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \int_{-1}^{+1} d\cos\theta_h \, I_{2,3,6,9} \, , \\ \langle I_{4,5,7,8} \rangle &= \frac{1}{\Gamma} \int_{q_{\min}^2}^{q_{\max}^2} dq^2 \int_{p_{\min}^2}^{p_{\max}^2} dp^2 \left[\int_{0}^{+1} d\cos\theta_h - \int_{-1}^{0} d\cos\theta_h \right] \, I_{4,5,7,8} \end{split}$$

▶ Observable I₁₋₉ separately measured for D⁰ [⟨I_i⟩] and D
⁰ [⟨I_i⟩]
 ▶ ⟨S_i⟩ and ⟨A_i⟩ are defined as:

$$\begin{split} \langle S_i \rangle &= \frac{1}{2} \left[\langle I_i \rangle (+) (-) \langle \bar{I}_i \rangle \right]; \\ \langle A_i \rangle &= \frac{1}{2} \left[\langle I_i \rangle (-) (+) \langle \bar{I}_i \rangle \right]; \\ \mathcal{P} \text{ even } (I_{2,3,4,7}) \& \ CP \text{ odd } (I_{5,6,8,9}) \text{ coefficients} \end{split}$$

С