and CKM Matrix
Pavel Pakhlov (HSE, Moscow)

The 41st International Symposium on Physics in Collision, Tbilisi, Georgia

SM interactions

Important SM principle: gauge invariance

Gauge invariance fixes all interaction of gauge bosons: selfinteraction and interaction with fermions and scalars

3 free
coupling
constants ~ 1

13 free parameters varied from 0.000001 to 1

Gauge bosons forces
(electromagnetic, weak, strong)

SM is really built on few keystone principles, but we haven't grasped some principles yet.
This is not the SM problem - this is likely a problem of lack of our creativity...

Parameters of the Standard Model

- 3 gauge couplings (of the same order ~1, moreover, they are running and seem to be trending to the same value)
- 2 Higgs parameters (one is scaling parameter we can't avoid this, another is selfcoupling ~ 1)
- 6 quark masses
- CKM: 3 quark mixing angles + 1 phase
- 3 (+3) lepton masses
- (3 lepton mixing angles + 1 phase)
$=18(+7)$

()$=$ with Dirac neutrino masses

Fermion interactions

Two 3×3 arbitrary complex matrices! $9 \cdot 2 \cdot 2=36$ free parameters?

Fortunately, many parameters are unphysical!

$$
\begin{gathered}
\frac{g}{\sqrt{2}} \sum_{i, j=1}^{3}\left(\bar{U}_{L}^{i} \bar{D}_{L}^{i}\right) \gamma^{\mu} V_{C K M}^{i j}\left(\begin{array}{cc}
0 & W_{\mu}^{+} \\
W_{\mu}^{-} & 0
\end{array}\right)\binom{U_{L}^{i}}{D_{L}^{i}} \\
V_{C K M}^{i j}=\left(L_{U} L_{D}^{\dagger}\right)^{i j}
\end{gathered}
$$

4 free parameters: CKM mixing
$3+3+4=10$ is much better than 36 but worse than 0 (expected for ToE)

Flavour physics

Aristotle: Nature Does Nothing In Vain (NDNIV)

We used almost the entire contents of the SM particle table to build the World, but two fermion generations (and all antifermions) remain unused...

As for the macroscopic role of the particles of the second and the third generations, it seems at first glance trifling. These particles resemble the rough sketches, which the Creator has thrown out as unsuccessful, and which we with our sophisticated equipment dug in his wastebasket. Now we are starting to understand that these particles play an important role in the first moments of the Big Bang...

Lev Okun

CP violation

CP violation is necessary for evolution of matter dominated universe, from symmetric initial state (A. Sakharov, 1967).

Nature chosen an expensive way to remove (lifethreatening) antimatter (Why even create it then?) using two extra quark's generation. CP violation through the complex quark mixing (M. Kobayashi \& T. Maskawa, 1972).
$\left|V_{C K M}\right|=\left(\begin{array}{lll}0.9740 & 0.2265 & 0.0036 \\ 0.2264 & 0.9732 & 0.0405 \\ 0.0085 & 0.0398 & 0.9992\end{array}\right) \pm\left(\begin{array}{lll}0.0001 & 0.0005 & 0.0001 \\ 0.0005 & 0.0001 & 0.0008 \\ 0.0002 & 0.0008 & 0.0000\end{array}\right)$ Almost identity
Almost diagonal
Almost symmetric

$$
J_{C P}=\left|\operatorname{Im}\left(V_{i \alpha} V_{j \beta} V_{i \beta}^{*} V_{j \alpha}^{*}\right)\right|=\left(2.96_{-016}^{+0.20}\right) \times 10^{-5}
$$

CPV is tiny in CKM; it is not enough to produce BAU

Wolfenstein parameterization

Hierarchy of strengths of quark transitions

> Charge $+2 / 3$
> $\lambda \equiv \sin \theta_{C}=\sin \theta_{12} \approx 0.23$
> $-\mathcal{O}(1)$
magnitudes

Expansion on a small parameter λ :

$$
A=\frac{\sin \theta_{23}}{\sin ^{2} \theta_{12}} \approx 0.8 \quad(\rho, \eta)=\frac{\sin \theta_{13}}{\sin \theta_{12} \sin \theta_{23}}(\cos \delta, \sin \delta)
$$

Unitarity Triangle

Unitarity condition of CKM matrix $V_{C K M}^{\dagger} V_{C K M}=1$ gives 9 constrains $V_{i j} V_{i k}^{*}=\delta_{j k}$:

- $3(j=k)$ says that the probability for each quark to couple to W^{-}is summed up to 1 ;
- $6(j \neq k)$ can be represented by triangles in the complex plane.
- 4 triangles are degenerate; 2 has comparable sides $\left(\propto \lambda^{3}\right)$.
- One is a Very Important Triangle:

$$
V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}+V_{t b} V_{t d}^{*}=0
$$

Very Important UT

This UT is about almost all CKM elements (not only their absolute values, but phases as well).

$$
V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}+V_{t b} V_{t d}^{*}=0 \quad \boldsymbol{V}_{\boldsymbol{C K M}}=\left(\begin{array}{ccc}
\boldsymbol{V}_{\boldsymbol{u d}} & \boldsymbol{V}_{\boldsymbol{u s}} & \boldsymbol{V}_{\boldsymbol{u b}} \\
\boldsymbol{V}_{\boldsymbol{c d}} & \boldsymbol{V}_{\boldsymbol{c s}} & \boldsymbol{V}_{\boldsymbol{c b}} \\
\boldsymbol{V}_{\boldsymbol{t d}} & \boldsymbol{V}_{\boldsymbol{t s}} & \boldsymbol{V}_{\boldsymbol{t b}}
\end{array}\right)
$$

Almost all information on UT sides and angles comes from B-physics.

Where are we now

- Since early $90^{\text {th }}$ evidence that CKM consists of complex phase by the first generation B-experiments (Argus and CLEO): observation of $B_{d}^{0}-\bar{B}_{d}^{0}$ mixing and $b \rightarrow u$ transitions
- 2001 - first observation of CP violation in B-decays by B-factories (BaBar and Belle) confirms that CKM is really complex
- During the past 20 years success of the CKM picture: all CP-violation manifestations in lab experiments are amenable to a single complex CKM phase
- Now look for deviations from overall consistency of CM ansatz
- Updates mainly from B-factories full samples and new LHCb and Belle II results

B-physics \& computer

exneriments

Absolute values...

Nuclear

$$
K \rightarrow \pi \ell^{+} v
$$

$$
B \rightarrow \pi \ell^{+} \boldsymbol{v}
$$

beta-decays

$$
\begin{array}{ll}
\text { beta-decays } & K^{+} \rightarrow \mu^{+} v \\
\pi^{+} \rightarrow \pi^{0} \ell^{+} v & \tau^{+} \rightarrow K^{+} v \\
\pi^{+} \rightarrow \mu^{+} \boldsymbol{v} &
\end{array}
$$

$$
\boldsymbol{D} \rightarrow \boldsymbol{\pi} \ell^{+} \boldsymbol{v} \quad \boldsymbol{D} \rightarrow \boldsymbol{K} \ell^{+} \boldsymbol{v} \quad \boldsymbol{B} \rightarrow \boldsymbol{D} \ell^{+} \boldsymbol{v}
$$

$$
D \rightarrow \rho \ell^{+} v
$$

$$
\boldsymbol{D} \rightarrow \boldsymbol{K}^{*} \ell^{+} \boldsymbol{v}
$$

$$
\boldsymbol{B} \rightarrow \boldsymbol{D}^{*} \ell^{+} \boldsymbol{v}
$$

$$
B_{c} \rightarrow B_{d}^{0} \ell^{+} v
$$

$$
\boldsymbol{B}_{c} \rightarrow \boldsymbol{B}_{s}^{0} \ell^{+} v
$$

$$
\Lambda_{b} \rightarrow \Lambda_{c} \ell^{+} v
$$

$$
D^{+} \rightarrow \mu, \tau^{+} v
$$

$$
D_{s}^{+} \rightarrow \mu, \tau^{+} v
$$

$$
B \rightarrow X_{c} \ell^{+} v
$$

\[

\]

$\left|\boldsymbol{V}_{c b}\right| \&\left|\boldsymbol{V}_{u b}\right|$ determination

$\left|V_{c b}\right|$ normalizes the whole unitarity triangle;
measured using weak tree (no NP!) transition $b \rightarrow c(u) \ell \bar{v}_{\ell}$ Complementary experimental approaches: Inclusive decays $\bar{B} \rightarrow X_{c(u)} \ell^{-} \bar{v}_{\ell} ; X_{c(u)}$ is not reconstructed

- experiment: large backgrounds \rightarrow only B factories
- theory: series in α_{S} and $\Lambda_{Q C D} / m_{b}$ relying on HQE Exclusive decays such as $B \rightarrow D(\pi) \ell \bar{v}_{\ell}$ or $B \rightarrow D^{*}(\rho) \ell \bar{v}_{\ell}$
- experiment: controlled backgrounds \rightarrow LHCb \& B factories
- theory/lattice: Form Factors (FF)

$\bar{B}_{\bar{q} \longrightarrow}^{b} \bar{q}$
\boldsymbol{X}_{c} $l^{\ell^{-}}$

Rely on different theoretical calculations;
Use different experimental techniques;

$$
\begin{aligned}
& \text { expected agreement would be a useful test of our } \\
& \text { understanding of both experiment and theor. }
\end{aligned}
$$

Have uncorrelated statistical and systematic uncertainties.

Recent $\left|V_{c b}\right| \&\left|V_{u b}\right|$ studies

But, instead of agreement, longstanding tension ($\sim 3 \sigma$) between inclusive and exclusive measurements.

BELLE (full data set):

- q^{2} moments in inclusive tagged $\bar{B} \rightarrow X_{C} \ell^{-} \bar{v}_{\ell}$ PRD 104, 112011 (2021)

BELLE II:

- q^{2} moments in inclusive tagged $\bar{B} \rightarrow X_{C} \ell^{-} \bar{v}_{\ell}$ arXiv:2205.06372 (2022)
- exclusive tagged $\bar{B} \rightarrow \pi \ell^{-} \bar{v}_{\ell}$ (preliminary (2022))
- exclusive tagged $B^{0} \rightarrow D^{*-} \ell^{+} v_{\ell}$ (preliminary (2022))
- inclusive tagged $\bar{B} \rightarrow X_{u} \ell^{-} \bar{v}_{\ell}$ (preliminary (2022))

LHCb:

- exclusive $B_{s}^{0} \rightarrow K^{-} \ell^{+} v_{\ell}$ PRL 126, 081804 (2021)
- exclusive $\Lambda_{b}^{0} \rightarrow p \ell^{-} \bar{v}_{\ell}$ Nature Physics 11, 743 (2015)

Inclusive $\left|V_{c b}\right|$ measurements

JHEP 02 (2019) 177 motivated a purely data-driven $\left|\boldsymbol{V}_{\boldsymbol{c} \boldsymbol{b}}\right|$ analysis including higher order HQE corrections using $q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}$ moments. Requires to "reconstruct" \bar{v}_{ℓ} : only B-factories arXiv:2205.06372 [hep-ex]
New Belle II (62.8/fb) measurement of q^{2} moments in $\bar{B} \rightarrow X_{c} \ell^{-} \bar{v}_{\ell}$ using $B_{\text {tag }} \rightarrow$ hadrons. Good q^{2} resolution with kinematic fit.

Belle II, Belle PRD 104, 112011 (2021) and fit by F. Bernlochner et al. arXiv:2205.1027[hep-ph]

$$
\left|V_{c b}\right|=(41.69 \pm 0.63) \cdot 10^{-3}
$$

$\left|V_{u b}\right|$ measurements

Belle II
New Belle II (189.3/fb) measurement of $B^{0 /+} \rightarrow \pi^{-/ 0} \ell^{+} v_{\ell}$ with hadronic tag. Preliminary

Fit $M_{m i s s}^{2}$
$M_{\text {miss }}^{2}=\left(p_{e^{+} e^{-}}-p_{B_{t a g}}-p_{e}-p_{\pi}\right)^{2}$ in 3 bins of q^{2}

$$
\begin{aligned}
& q^{2}=\left(p_{e^{+} e^{-}}-p_{B_{t a g}}-p_{\pi}\right)^{2} \\
& \frac{d \Gamma\left(B \rightarrow \pi \ell^{+} v_{\ell}\right)}{d q^{2}}=\frac{G_{F}\left|V_{u b}\right|^{2}}{24 \pi^{3}}\left|p_{\pi}\right|^{3} f_{+}^{2}\left(q^{2}\right) \\
& \quad\left|V_{u b}\right|=(3.88 \pm 0.45) \cdot 10^{-3}
\end{aligned}
$$

Exclusive Measurements of $\left|V_{u b}\right| /\left|V_{c b}\right|$ at LHCb

$B_{S}^{0} \rightarrow K \mu v$
PRL 126, 081804 (2021)

$$
\left|V_{u b}\right| /\left|V_{c b}\right|_{\text {low } q^{2}}=0.0607 \pm 0.0015(\text { stat }) \pm 0.0013(\text { syst }) \pm 0.0008\left(D_{s}\right) \pm 0.0030(F F)
$$

$$
\left|V_{u b}\right| /\left|V_{c b}\right|_{\text {high } q^{2}}=0.0946 \pm 0.0030(\text { stat })_{-0.0025}^{+0.0024}(\text { syst }) \pm 0.0013\left(D_{s}\right) \pm 0.0068(F F)
$$

Nature 11, 743 (2015)

$$
\left|V_{u b}\right| /\left|V_{c b}\right|_{q^{2}>15}=0.083 \pm 0.004(\text { stat }) \pm 0.004(\text { syst })
$$

$\left|V_{t d}\right| \&\left|V_{t s}\right|$ determination

are not (yet) measurable in tree-level top quark decays;

to be determined from $B_{q}^{0}-\bar{B}_{q}^{0}$ oscillations New LHCb study 6/fb Nature Phys. 18, 1 (2022)
$\Delta m_{s}=(17.7683 \pm 0.0051 \pm 0.0032) p s^{-1}$

New Belle II study 190/fb preliminary

$\Delta m_{d}=(0.516 \pm 0.008 \pm 0.005) p s^{-1}$
$\left|V_{t d}\right| \&\left|V_{t s}\right|$ determination
$\begin{aligned} \Delta m_{q} \propto G_{F}^{2} m_{t}^{2} m_{B} f_{B_{q}}^{2} B_{B_{q}}\left(V_{t q}^{*} V_{t b}\right)^{2} \\ \text { decay constant }\end{aligned}$
$\begin{gathered}\frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}=\sqrt{\frac{\Delta m_{d} m_{B_{s}}}{\Delta m_{s} m_{B_{d}}}} \xi=0.2159 \pm 0.0004(\exp)+0.0107(L Q C D){ }^{\mathrm{m}} \\ \xi=f_{B_{s}} \sqrt{B_{B_{s}}} / f_{B_{d}} \sqrt{B_{B_{d}}}=1.268 \pm 0.063 S U(3) \text {-flavour breaking factor }\end{gathered}$
Other methods:

- $\left|V_{t s}\right|$ from $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$
$\underbrace{\Delta m_{q} \propto G_{F}^{2} m_{t}^{2} m_{B} f_{B}^{2}}_{\text {input from LQCD }}$
$\left|V_{t d}\right|=(8.6 \pm 0.2) \times 10^{-3}$
$\left|V_{t s}\right|=(41.5 \pm 0.9) \times 10^{-3}$

$$
f_{B_{d}} \sqrt{\sqrt{B_{B_{d}}}}=(210.6 \pm 5.5) \mathrm{MeV} f_{B_{s}} \sqrt{B_{B_{s}}}=(256.1 \pm 5.7) \mathrm{MeV}
$$

- $\left|V_{t d}\right| /\left|V_{t s}\right|$ from ratio $\mathcal{B}(B \rightarrow \rho \gamma) / \mathcal{B}\left(B \rightarrow K^{*} \gamma\right)$

U

anolas

CKM phases

β / ϕ_{1} measurements

the most theoretically clean. Penguin contribution to the final states with charmonium

- are expected to be small;

- has the same SM weak phase.

	BaBar	Belle	LHCb
	Full dataset, $465 \mathrm{M} B \bar{B}$	Full dataset, $772 \mathrm{M} B \bar{B}$	$3 / \mathrm{fb}$
$\sin 2 \beta=$	$0.687 \pm 0.028 \pm 0.012$	$0.667 \pm 0.023 \pm 0.012$	0.760 ± 0.034
$\mathcal{A}=$	$0.024 \pm 0.020 \pm 0.016$	$0.006 \pm 0.016 \pm 0.012$	-0.017 ± 0.029

the most precise UT value: $\beta=(22.2 \pm 0.7)^{\circ}$, need at least two more measurements with comparable accuracy; but all others are not so precise yet...

Direct CP asymmetry is consistent with 0 , confirming co-phasing of tree and penguin amplitudes

β / ϕ_{1} measurements

Important to check consistency of all $B^{0} \rightarrow$ charmonium K_{S}^{0} :

- penguin contribution may be different for different charmonia (penguins can be underestimated or NP contribution to the loop)
- for broad states decaying into light hadrons also interesting to probe interference with non-resonant
 (penguin) contribution

New Belle (full data set, $772 \mathrm{M} B \bar{B}$) CPV study of $B^{0} \rightarrow \eta_{c} K_{S}^{0}$. First shown at ICHEP22. Preliminary

- Previous measurements of this channel BaBar - full data
 set; Belle - using $151 \mathrm{M} B \bar{B}$

$$
S=0.59 \pm 0.17 \pm 0.07 \quad \mathcal{A}=0.16 \pm 0.12 \pm 0.06
$$

β / ϕ_{1} measurements

Belle II: first look at CPV in $B^{0} \rightarrow J / \psi K_{S}^{0}$:

- $B_{d}^{0}-\bar{B}_{d}^{0}$ oscillations study demonstrated that Δt resolution and flavor tagging working well.
- Use $B^{+} \rightarrow J / \psi K^{+}$for exercising: no CPV (neither indirect nor direct) is observed as expected.
- Systematics errors: the biggest contribution is from the statistical errors of the control samples.

$$
\begin{aligned}
& S=0.720 \pm 0.062 \pm 0.016 \\
& \mathcal{A}=0.094 \pm 0.044_{-0.017}^{+0.042}
\end{aligned}
$$

The result is in good agreement with WA; statistical and systematics errors are as expected. Tools are ready for an impactful $\sin 2 \phi_{1}$ measurement.

α / ϕ_{2} measurements

Penguin contribution:

- not expected to be small
- consists of different weak phase

- unknown strong phase Isospin analysis PRL 65, 3381 (1990) based on relations:

$$
\begin{aligned}
A_{+-} \equiv A\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right) & =e^{-i \alpha} T^{+-}+P \\
\sqrt{2} A_{00} \equiv \sqrt{2} A\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right) & =e^{-i \alpha} T^{00}+P \\
\sqrt{2} A_{+0} \equiv \sqrt{2} A\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) & =e^{-i \alpha}\left(T^{00}+T^{+-}\right)
\end{aligned}
$$

Need to measure :

- $6 \mathrm{BR}^{\prime}$ s $B^{0}\left(\bar{B}^{0}\right)$ to $\pi^{+} \pi^{-} ; \pi^{0} \pi^{0}$; and $B^{ \pm}$to $\pi^{ \pm} \pi^{0}$ Isospin triangles: $\quad \sqrt{2 A_{+0}}$
- indirect CPV in $B^{0} \rightarrow \pi^{+} \pi^{-}\left(\alpha \sin 2 \alpha_{e f f}\right)$

$$
\begin{aligned}
& A_{+-}+\sqrt{2} A_{00}=\sqrt{2} A_{+0} \\
& \bar{A}_{+-}+\sqrt{2} \bar{A}_{00}=\sqrt{2} \bar{A}_{+0}
\end{aligned}
$$

	$\pi^{+} \pi^{-}$	$\pi^{ \pm} \pi^{0}$	$\pi^{0} \pi^{0}$
B-factories	(1)	(4)	(1)
LHCb	(艹)	(2)	(i)

Isospin breaking:

- u - d mass/charge difference
- $\pi-\eta-\eta^{\prime}(\rho-\omega)$ mixing

α / ϕ_{2} measurements

Recent LHCb (run 2 data set, 1.9/fb) CPV study of $B^{0} \rightarrow \pi^{+} \pi^{-}$

- Perfect hadron identification $\}$ High signal purity \&
- Vertex constraint
controlled bgs
- Huge statistics
- Effective tagging (both same and opposite sides)

$$
\begin{aligned}
& S=-0.706 \pm 0.042 \pm 0.013 \\
& C=-0.311 \pm 0.045 \pm 0.015
\end{aligned}
$$

HFLAV
Moriond 2021 PRELIMINARY

α / ϕ_{2} measurements

$\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}[\mathrm{GeV}]$

$\cos \theta_{\rho^{+}}$

New Belle II (190/fb) study of direct CPV in $B^{+} \rightarrow \rho^{+} \rho^{0}$

- Previous study showed small penguin contribution in this channel: more sensitivity to α from the isospin analysis.
- Only two-fold ambiguity (unlike 8-fold in $\pi \pi$)
- Vector-Vector final state: mixture of CP even and CP odd - to be disentangle by angular analysis

$$
\begin{aligned}
& \boldsymbol{f}_{L}=0.943_{-0.033}^{+0.035} \pm 0.027 \\
& \boldsymbol{A}=-0069 \pm \mathbf{0 . 0 6 8} \pm 0.060
\end{aligned}
$$

~ null direct CPV;
almost 100% one CP component

$$
\alpha=\left(85.2_{-4.3}^{+4.8}\right)^{\circ}
$$

γ / ϕ_{3} measurements

Angle between two amplitudes is γ, but the final states can interfere only via $B_{S}^{0}-\bar{B}_{S}^{0}$
 mixing. Only LHCb can do such analysis.
Recent LHCb study (9/fb) JHEPO3(2021)137 of indirect CPV in $B_{s}^{0} \rightarrow D_{s}^{-} K^{+} \pi^{+} \pi^{-}$

- Tagging and vertexing are tested and verified with $B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}$
- Many intermediate resonances (not obligatory with the same fraction in two diagrams): study of resonance decomposition (time-dependent amplitude analysis).

PS integrated coherence factor:
$\kappa=0.72 \pm 0.04 \pm 0.06 \pm 0.04($ model $)$

γ / ϕ_{3} measurements

Angle between two amplitudes is γ, but the final states are different $D^{0} \neq \bar{D}^{0}$. Special efforts are required to organize interference and CPV:

- GLW method PLB253, 483 (1991): D^{0} decays into CP-eigenstate (Cabibbo suppressed modes, e.g. $K^{+} K^{-}, K_{S}^{0} \pi^{0}$)

$$
A\left(B^{+} \rightarrow \bar{D}^{0} K^{+}\right)=A\left(B^{-} \rightarrow D^{0} K^{-}\right)
$$

- ADS method PRL78, 3357 (1997): D^{0} decays into DCS mode in allowed final state: (very rarely, but improve r_{B})
- BPGGSZ method PRD68, 054018 (2003): D^{0} decays into three body state (e.g. $K_{S}^{0} \pi^{+} \pi^{-}$): mixture of intermediate (interfering) resonances: non (CA and DCS) and opposite CP eigenstates ± 1. Resolve each contribution by Dalitz analysis. Improved by using binned Dalitz $D_{C P}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$from CLEOc/BES data.

γ / ϕ_{3} measurement

New Belle (711/fb)+Belle II (128/fb) measurement of γ using BPGGSZ method $B^{+} \rightarrow D^{0} K^{+}\left(\pi^{+}\right), D^{0} \rightarrow$ $K_{S}^{0} \pi^{+} \pi^{-}, K_{S}^{0} K^{+} K^{-}$

- Use binned Dalitz $D_{C P}^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-}\left(K^{+} K^{-}\right)$from CLEOc/BES data

$$
\gamma \equiv \varphi_{3}=(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ}
$$

γ / ϕ_{3} measurement

JHEP 07 (2022), 099
New LHCb (9/fb) measurement of γ in $B^{+} \rightarrow$ $D^{0} K^{+}\left(\pi^{+}\right), D^{0} \rightarrow K^{+} K^{-} \pi^{0}, \pi^{+} \pi^{-} \pi^{0}, K^{ \pm} \pi^{\mp} \pi^{0}$

- Use GLW and ADS methods
- No Dalitz analysis but instead use information from CLEOc/BES on fraction of CP even

γ / ϕ_{3} measurement

$$
\gamma \equiv \varphi_{3}=\left(65.4_{-4.2}^{+3.8}\right)^{\circ}
$$

- Most precise by single experiment!
- ~2 σ tension between charged and neutral B mesons.

γ / ϕ_{3} measurement

Progress over the past two years mostly thanks to LHCb using full ($9 / \mathrm{fb}$ run 1,2) data sets.

- New methods applied, old results updated
- The errors are improved by $\sim 30 \%$
- The central value moves by almost 2σ
- Now is in good agreement with global CKM fit

$$
\gamma=\left(65.6_{-2.7}^{+0.9}\right)^{\circ}
$$

obtained from all other CKM parameters, except γ direct measurements.

- Still some tension between different methods/B's/channels

$$
\gamma \equiv \varphi_{3}=\left(72.1_{-4.5}^{+4.1}\right)^{\circ}
$$

$$
\gamma \equiv \varphi_{3}=\left(66.2_{-3.6}^{+3.4}\right)^{\circ}(2022) \gamma\left[{ }^{\circ}\right]
$$

Summary

Progress over the past two years: modest but gradual and incremental.

- LHCb \& Belle update many analysis using full data set
- Belle II first results: still smaller statistics than at Belle, but demonstrate readiness to go on Good agreement in global CKM fit, though some tension between different methods for the same parameter: $\left|V_{c b}\right|,\left|V_{u b}\right|, \gamma$
Absolute values of CKM elements are dominated by theoretical/model/phenomenological uncertainties. Recent progress in LQCD + new inputs from charm sector to check and verify.

Summary

CKM future in 5－10 years

	B factories		LHCb	
	Belle＋BaBar	Belle II	Run 1，2	Upgrade II
$\int \mathcal{L} \mathrm{dt}$	$(1+0.6) / \mathrm{ab}$	$40 / \mathrm{ab}$	$9 / \mathrm{fb}$	$300 / \mathrm{fb}$
α / ϕ_{2}	5°	1°		
β / ϕ_{1}	0.8°	0.2°	1°	0.1°
γ / ϕ_{3}	8°	1°	4°	0.3°

AMscsio
THANKS MERCI Tesekkiurler

ありがとう תודה

4．

DANKE
 DÍKY

（ $)$ ROMnR2OS
기사
GRACIAS
DZIEKKJE

