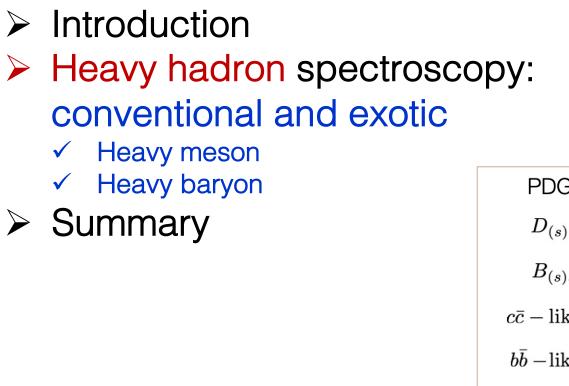


Experimental overview on heavy spectroscopy

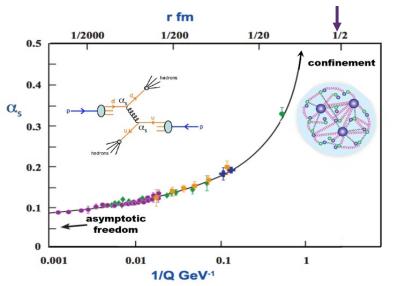
Xiao-Rui Lyu (xiaorui@ucas.ac.cn)

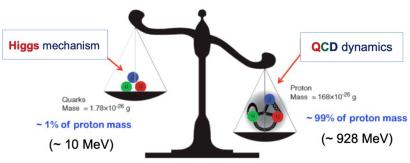

University of Chinese Academy Sciences

Physics in Collision 2022 The 41st International Symposium on Physics in Collision 5-9 September, 2022 | Tbilisi, Georgia

Xiao-Rui LYU

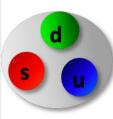
Outline


PDG:	2001	2021
$D_{(s)J}$	10	27
$B_{(s)J}$	4	12
$c\bar{c} - like$	13	40
$b\bar{b}-{ m like}$	12	16
$c-\mathrm{baryons}$	8	27
$b-{\rm baryons}$	0	23


I apologize for not covering all the experiments results.

Introduction

- Quarks and gluons not isolated in nature.
 - Formation of colorless bound states: "Hadrons"
 - **1-fm scale** size of hadrons?
- Hadron spectroscopy provides opportunities to study QCD in the non-perturbative region
 - Extensive and precise spectroscopy combined with a thorough theoretical analysis, will add substantially to our knowledge of QCD
- Complex exotic hadrons can reveal new or hidden aspects of the dynamics of strong interactions
 - Predicted in quark model
 - Recent results show strong evidence for their existence

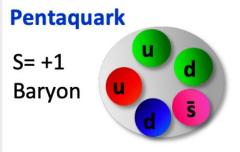


PIC2022, Tbilisi, Georgia

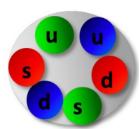
3

Different types of hadrons to be explored

Baryons are red-blue
green triplets


∧=usd

Mesons are coloranticolor pairs


π=ūd

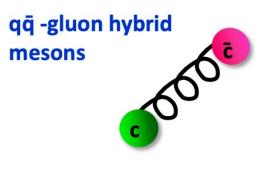
Other possible combinations of quarks and gluons :

H di-Baryon

Tightly bound 6 quark state

Glueball

Color-singlet multigluon bound state

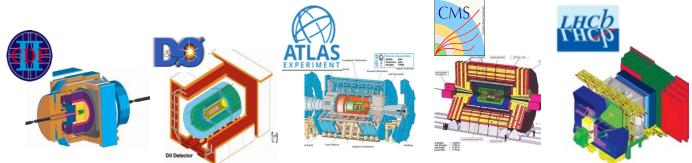

Tetraquark

Tightly bound diquark & anti-diquark

Molecule

loosely bound mesonantimeson "molecule"

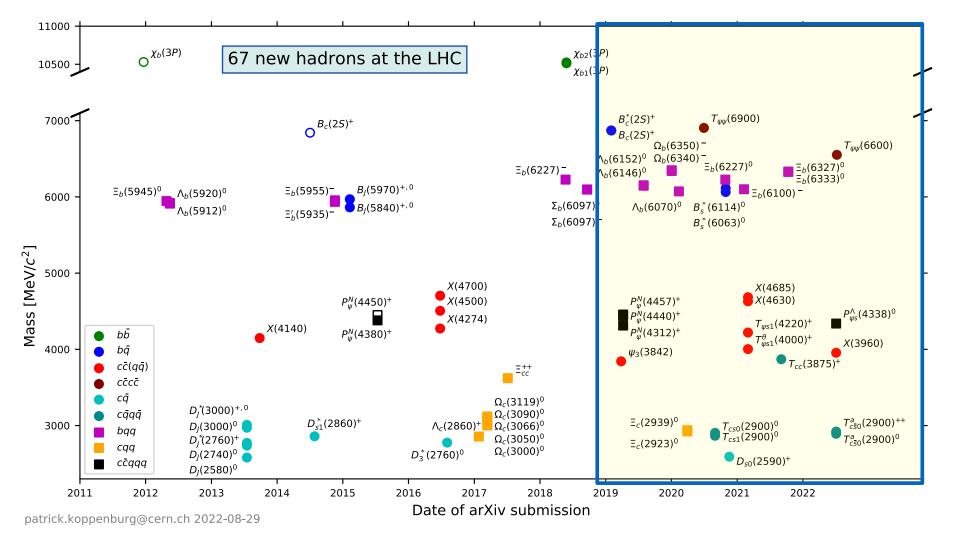
Xiao-Rui LYU


Main contributors worldwide

• e⁺e⁻ collider

Hadron collider

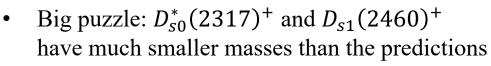
• Fixed-target experiments

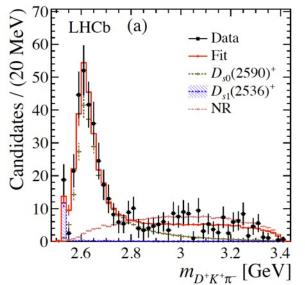


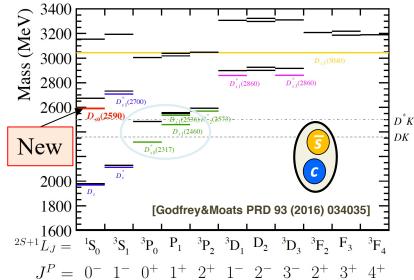
Xiao-Rui LYU

Heavy hadron Spectroscopy

an example: LHC as a Large Hadron Discovery Factory


Xiao-Rui LYU


Heavy mesons



A new state $D_s^+(2590)$ from $B^0 \to D^+ D^- K^+ \pi^-$ PRL126, 122002 (2021)

- Additional experimental input is helpful
- Use $B^0 \rightarrow D^+D^-K^+\pi^-$ decay with 5.4 fb⁻¹ of RUN2 at LHCb
 - $m(K^+\pi^-) < 0.75$ GeV consistent with Swave $K^+\pi^-$
- $D^+K^+\pi^-$ invariance mass shows a strong peak

Amplitude fit is performed

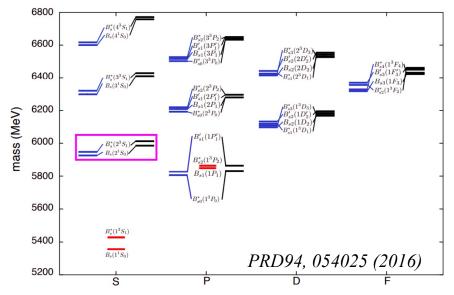
State	Pole Mass [MeV]	Pole Width [MeV]	J ^P
$D_{s0}(2590)^+$	$\textbf{2591} \pm \textbf{6} \pm \textbf{7}$	$89 \pm 16 \pm 12$	0-

• Strong candidate for $D_s(2^1S_0)$

Xiao-Rui LYU

Observation of new excited B_s^0 states

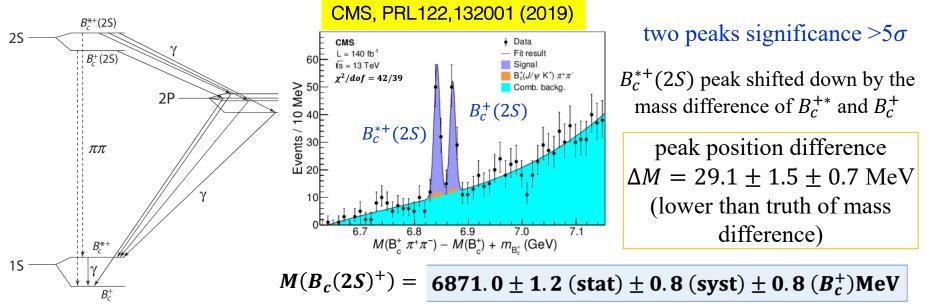
•
$$\Delta m = m(B^+K^-) - M_{B^+} - M_{K^+}$$

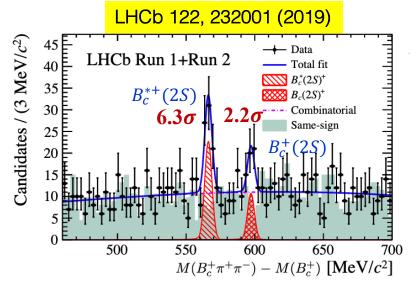

• The B_s^0 excitation spectrum is mostly unexplored

- A structure is observed in the $B^{\pm}K^{\mp}$ mass spectrum with 9 fb⁻¹ RUN 1+2 data.
- Well described with a two-resonance model

$$m_1 = 6063.5 \pm 1.2 \text{ (stat)} \pm 0.8 \text{ (syst) MeV},$$

 $\Gamma_1 = 26 \pm 4 \text{ (stat)} \pm 4 \text{ (syst) MeV},$
 $m_2 = 6114 \pm 3 \text{ (stat)} \pm 5 \text{ (syst) MeV},$
 $\Gamma_2 = 66 \pm 18 \text{ (stat)} \pm 21 \text{ (syst) MeV}.$


EPJC 81, 601 (2021)

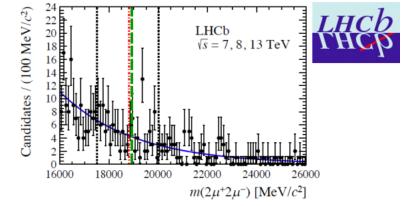

Their assignments in the spectrum is not yet conclusive

Observation of two excited Bc mesons

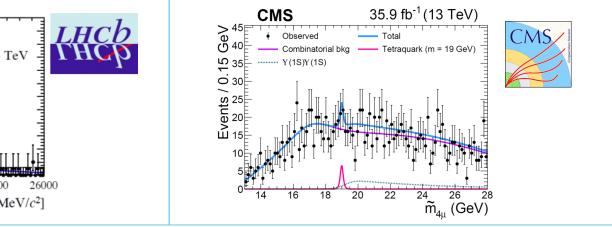
 $M(B_c^*(2S)^+)_{rec} = M(B_c^*(2S)^+) - [M(B_c^{+*}) - M(B_c^+)]$ $6841.2 \pm 0.6 \text{ (stat)} \pm 0.1 \text{ (syst)} \pm 0.8 (B_c^+) \text{ MeV}/c^2,$ $M(B_c(2S)^+) =$ $6872.1 \pm 1.3 \text{ (stat)} \pm 0.1 \text{ (syst)} \pm 0.8 (B_c^+) \text{ MeV}/c^2.$

> peak position difference $\Delta M = 31.0 \pm 1.4 \pm 0.0 \text{ MeV}$

Hidden-flavor exotic hadrons


Study on fully heavy tetraquark state

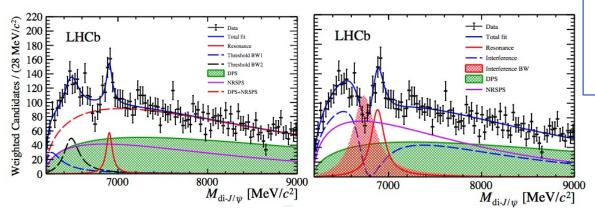
- ✤ Existence of $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ states ($Q_i = c \text{ or } b$) is expected by many QCD models
- ✤ $T_{bb\bar{b}\bar{b}}$ was searched for at LHCb and CMS, but not observed

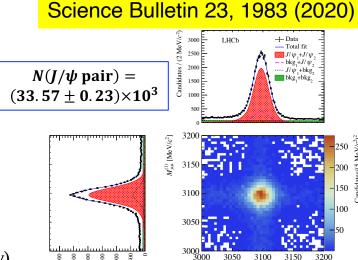

$T_{bb\overline{b}\overline{b}}$ searches at LHCb [JHEP 10, 086 (2018)]

- 6.3 fb⁻¹ at 7, 8 and 13 TeV
- Explored the mass region 17.5 20.0 GeV/c²
- No significant signal

*T*_{*bbbb*} searches at CMS [PLB808, 135578(2020)]

- 35.9 fb⁻¹ at 13 TeV
- Explored the mass region $17.5 19.5 \text{ GeV/c}^2$
- No significant signal


✤ $T_{cc\bar{c}\bar{c}}$ states predicted to have $M \in [5.8, 7.4]$ GeV/c, away from known quarkonia and quarkonium-like exotic states



Observation of fully charmed tetraquark state X(6900) [*cccc*]

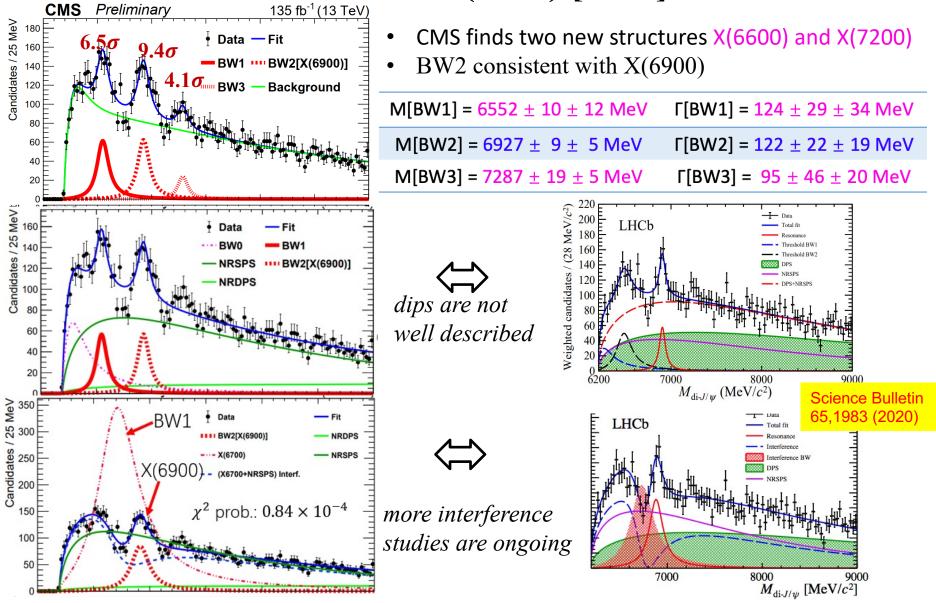
- ► Double $J/\psi(\rightarrow \mu^+\mu^-)$ combinations in Run 1+2 data
- The J/ ψ -pair invariant mass spectrum is inconsistent with non-resonant SPS- and DPS-only hypothesis by more than 5 σ in the [6.2, 7.4] GeV/c² mass region
- Assuming X(6900) is a resonance with Breit-Wigner lineshape
 - ✓ Model I: Based on no-interference fit (worse fitting quality) $M[X(6900)] = 6905 \pm 11(\text{stat}) \pm 7(\text{syst}) \text{ MeV}/c^2$ $\Gamma[X(6900)] = 80 \pm 19(\text{stat}) \pm 33(\text{syst}) \text{ MeV}/c^2$
 - ✓ Model II: Based on the simple model with interference (better fitting quality) $M[X(6900)] = 6886 \pm 11(\text{stat}) \pm 11(\text{syst}) \text{ MeV}/c^2$ $\Gamma[X(6900)] = 168 \pm 33(\text{stat}) \pm 69(\text{syst}) \text{ MeV}/c^2$

consistent with predicted $T_{cc\bar{c}\bar{c}}$ states

The lower broader structure:

- feed-down from heavier quarkonia,
 - e.g. $T_{cc\bar{c}\bar{c}} \rightarrow \chi_c(\rightarrow J/\psi\gamma) + J/\psi$
- near-threshold kinematic rescattering effects

PIC2022, Tbilisi, Georgia

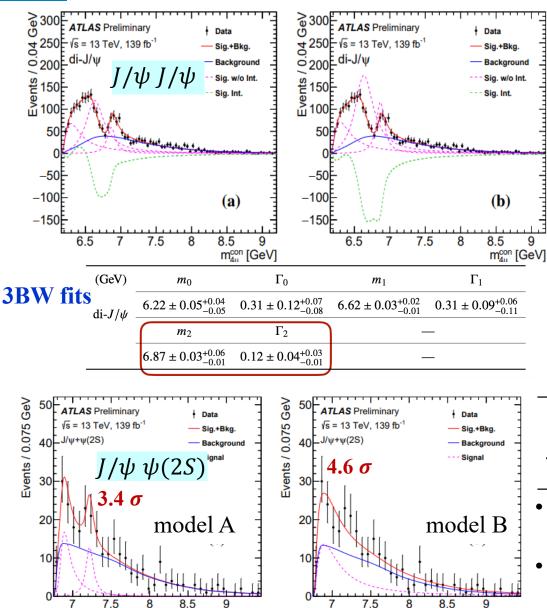

13

 $M_{\mu\mu}^{(2)}$ [MeV/c²]

Observations of fully charmed tetraquark state X(6600) [ccccc]

Xiao-Rui LYU

PIC2022, Tbilisi, Georgia


Xiao-Rui LYU

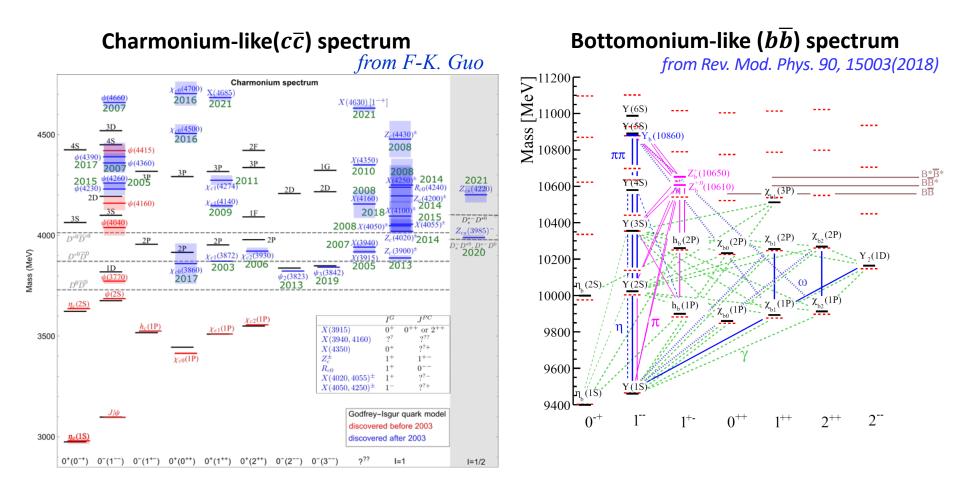
ATLAS confirmations of X(6900)

m_{4u}^{con} [GeV]

PIC2022. Tbilisi, Georgia

m_{4u}^{con} [GeV]

ATLAS-CONF-2022-040


- The 3rd peak mass is consistent with the LHCb observed X(6900), with significance of 10σ
- The broad structure at the lower mass could from other physical effects, e.g. feed-down from higher dicharmonium resonances

(GeV)		m_3	Γ_3
$J/\psi + \psi(2S)$	model A	$7.22 \pm 0.03^{+0.02}_{-0.03}$	$0.10\substack{+0.13+0.06\\-0.07-0.05}$
		$6.78 \pm 0.36^{+0.35}_{-0.54}$	$0.39 \pm 0.11 \substack{+0.11 \\ -0.07}$

- 1st peak could be related to X(6900): 4.6 σ
- 2^{nd} peak could be related to X(7200): **3.4** σ

Heavy quarkonium(-like) sector

Xiao-Rui LYU

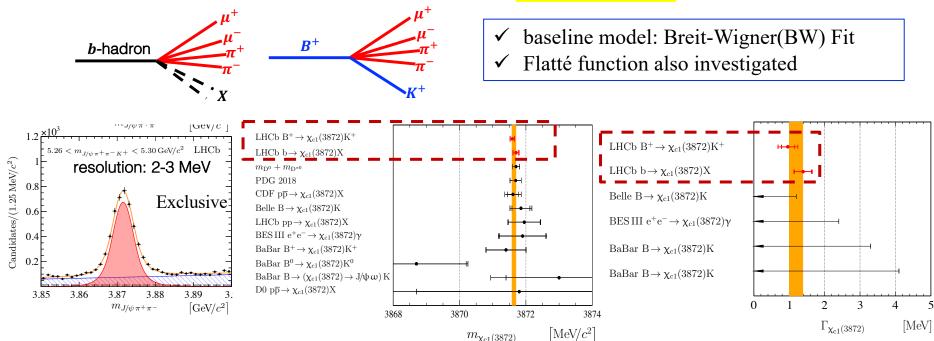
What have we learnt about X(3872)

- *X*(3872) nature is still uncertain, although many studies are performed since 2003
 - $J^{PC} = 1^{++}$
 - Mass = 3871.69 ± 0.17 MeV
 - Width < 1.2 MeV @90% CL

 $\delta E = (m_{D^{*0}} + m_{D^0}) - m_{X(3872)} = 0.01 \pm 0.20 \text{ MeV}$

- Production
 - In e⁺e⁻ collision, see strong connection of Y(4260) resonance decays
 [BESIII, PRL 112. 092001 (2014); 122, 202001 (2019)]
 - In *b*-hadron decays: B, Bs, Λ_b , ...
 - Prompt production in $pp/p\bar{p}$ and heavy ion collision
- What is it?
 - Loosely $D^0\overline{D}^{0*}$ bound state?
 - Mixture of $\chi_{c1}(2P)$ and $D^0\overline{D}^{0*}$?
- Important to fully explore its production and decay properties

Xiao-Rui LYU

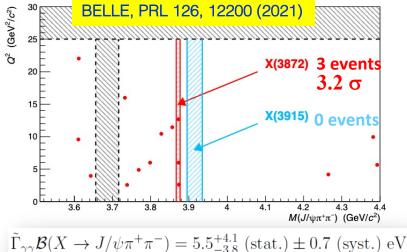

Mode		Fraction (Γ_i / Γ)
Γ1	e*e	$< 2.8 \times 10^{-6}$
Γ ₂	$\pi^+\pi^- J/\psi(1S)$	(3.8 ± 1.2)%
Γ3	$\pi^+\pi^-\pi^0 J/\psi(1S)$	not seen
Γ_4	$\omega \eta_{c}(1S)$	< 33%
Гз 🛨	ωJ/ψ(1S)	$(4.3 \pm 2.1)\%$
Γ ₆	<i>\$</i>	not seen
Γ ₇	$D^0\overline{D}^0\pi^0$	(49 ⁺¹⁸ ₋₂₀)%
Γ ₈ +	$\overline{D}^{*0}D^0$	(37 ± 9)%
Γ9	77	< 11%
Γ ₁₀	$D^0 \overline{D}^0$	< 29%
Γ_{11}	D^+D^-	< 19%
Γ12	$\pi^0 \chi_{c2}$	< 4%
Гв 🕇	$\pi^0 \chi_{c1}$	$(3.4 \pm 1.6)\%$
Γ14	π ⁰ χ _{c0}	< 70%
Γ15	$\pi^+\pi^-\eta_c(1S)$	< 14%
Γ16	$\pi^+\pi^-\chi_{c1}$	< 7 × 10 ⁻³
Γ17	pp	$< 2.4 \times 10^{-5}$
- Radiat	tive decays	
Γ18	$\gamma D^+ D^-$	< 4%
Γ19	$\gamma \overline{D}^0 D^0$	< 6%
Г20 🛨	yJly	$(8 \pm 4) \times 10^{-3}$
Γ ₂₁	7Xel	< 9 × 10 ⁻³
Γ22	Wa.	< 3.2%
Г23 🛨	$\gamma \psi(2S)$	$(4.5 \pm 2.0)\%$

X(3872) lineshape

- Two measurements using $X(3872) \rightarrow J/\psi \pi^+\pi^-$ related to $\psi(2S)$
 - Inclusive $b \rightarrow X(3872)$ + anything: ~15.6k signals (more bkg) [PRD 102, 092005 (2020)]
 - **Exclusive** $B^+ \rightarrow X(3872)K^+ : \sim 4.2k$ signals (less bkg) [JHEP 08, 123 (2020)]

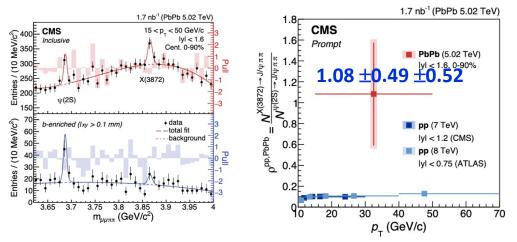
- The opening up of $D^0\overline{D}^{*0}$ threshold distorts the BW lineshape
- First determination of non-zero width
- A better parametrization of the lineshape is needed.

≻LHCb average


 $m_{\chi_{c1}(3872)}$

 $\checkmark M_{\rm BW} = 3871.64 \pm 0.06 \pm 0.01 \,{\rm MeV}/c^2$; $\Gamma_{\rm BW} = 1.19 \pm 0.19 \,{\rm MeV}/c^2$ $\checkmark \delta E = M(D^0) + M(\overline{D}^{*0}) - M(\chi_{c1}(3872)) = 0.07 \pm 0.12 \text{ MeV}/c^2$

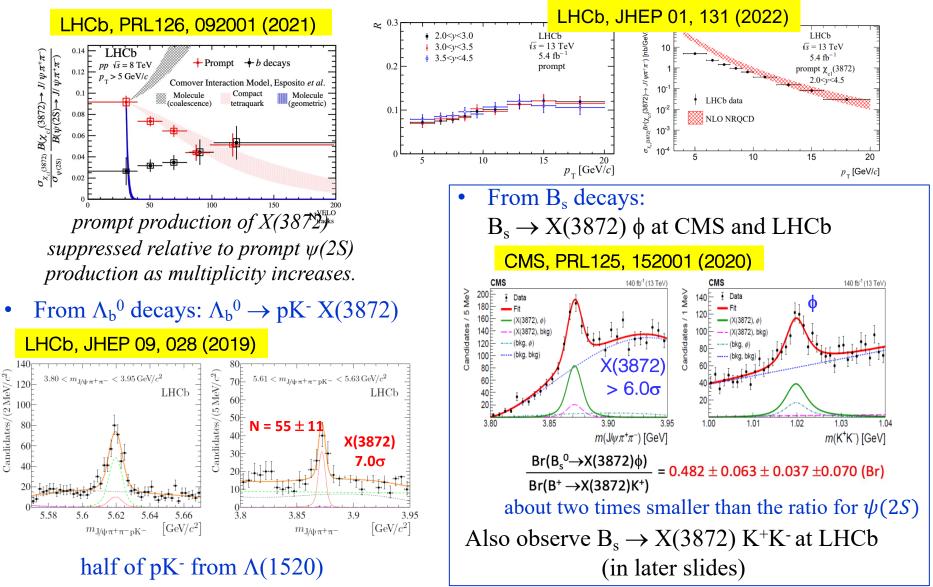
Xiao-Rui LYU


X(3872) production (1)

- Radiative production in $e^+e^- \rightarrow \gamma X(3872)$
- BESIII, PRL122, 202001 (2019) 4.15 < E_{cM} < 4.30 GeV 9.0 fb⁻¹ (b) 4.00 < E_{cM} < 4.15, 4.30 < E_{cM} < 4.60 GeV $\int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^{$
- From two-photon process: evidence of $\gamma \gamma^* \rightarrow X(3872) \rightarrow \pi^+ \pi^- J/\psi$

• Evidence in heavy ion collision: P_bP_b collision at $\sqrt{S_{NN}} = 5.02$ TeV per nucleon pair

PIC2022, Tbilisi, Georgia

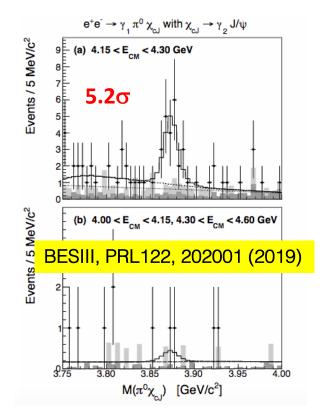

CMS, PRL128, 032001 (2022)

An indication of large R in P_bP_b collisions with respect to the pp collisions.

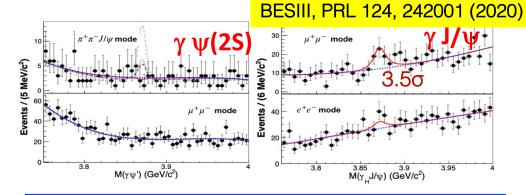
Xiao-Rui LYU

X(3872) production (2)

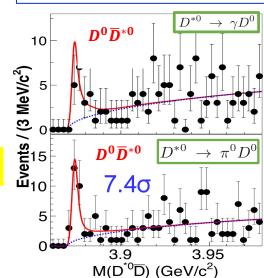
• Observation of prompt X(3872) relative to $\psi(2S)$ in pp collisions

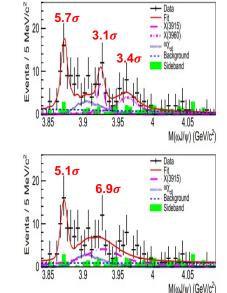

Xiao-Rui LYU

Here X(3872) decay information



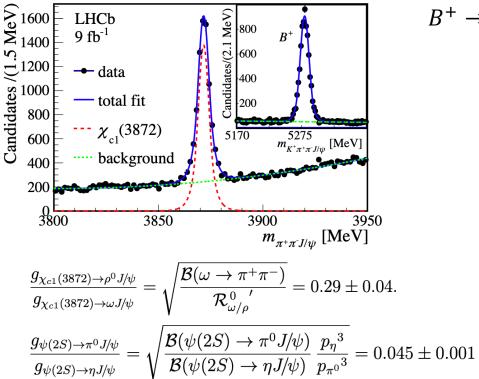
• Observation of X(3872) $\rightarrow \pi^0 \chi_{c1}$


Transition of $X(3872) \rightarrow \gamma J/\psi, \gamma \psi(2S)$

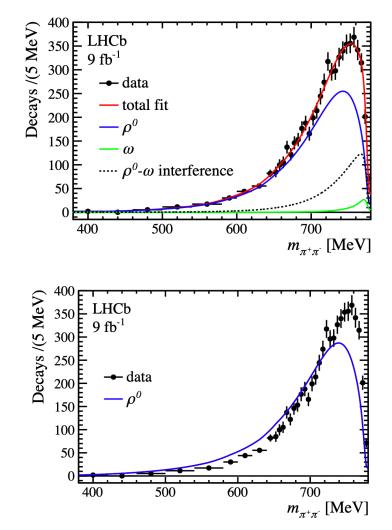


- Observation of X(3872) $\rightarrow \omega J/\psi$ BESIII, PRL 122, 232002 (2019)
- Observation of X(3872) $\rightarrow D^0 \overline{D}^{*0}$ BESIII, PRL 124, 242001 (2020)

 $R = \frac{BF(x(3872) \rightarrow \gamma \psi(2S))}{BF(x(3872) \rightarrow \gamma J/\psi)} < 0.59 \text{ at } 90\% \text{ C.L.}, \text{ agrees}$ with Belle(<2.1), while challenges Babar(3.4±1.1) and LHCb results (2.46± 0.70)

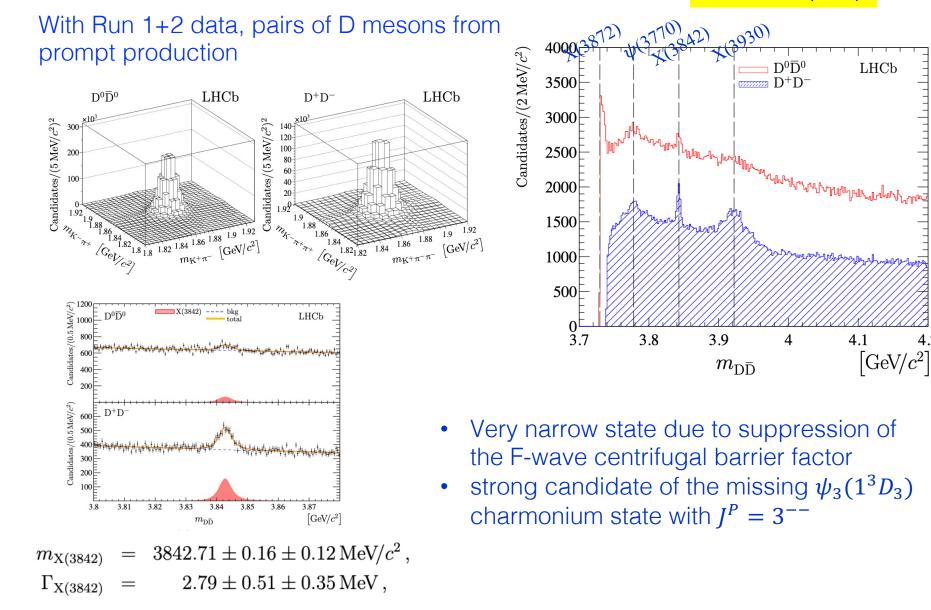


Xiao-Rui LYU



Observation of sizeable ω contribution in X(3872) $\rightarrow \pi^+\pi^- J/\psi$ arXiv:2204.12597

The isospin violating ρ^0 contribution, quantified for the first time with proper subtraction of the ω contribution, is an order of magnitude too large for X(3872) to be a pure charmonium state.


$B^+ \rightarrow K^+ X(3872)$ studied with RUN 1+2 data

Xiao-Rui LYU

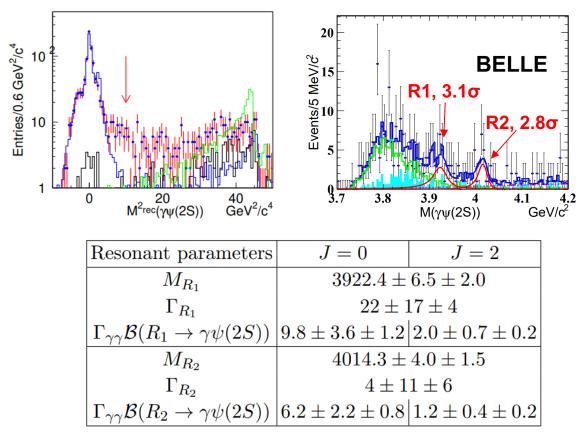
Observation of the X(3842) JHEP07, 035(2019)

Xiao-Rui LYU

LH

PIC2022, Tbilisi, Georgia

4.2

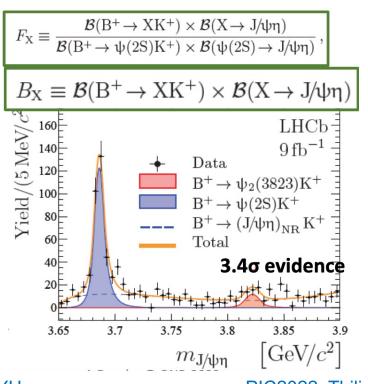


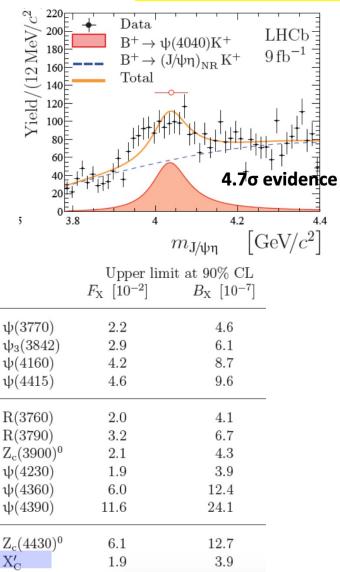
X states in $\gamma\gamma \rightarrow \gamma\psi(2S)$

PRD 105, 112011 (2022)

P-wave triplets near 3.9 GeV/c² remains puzzle, where X(3930), as a good candidate of χ_{c2}(2P), has a hyperfine splitting of 12 MeV/c² between χ_{c2}(2P) and X(3915)

- Both 0^{++} and 2^{++} can be produced in two-photon collisions and decay to $\gamma\psi(2S)$ via E1 transition.
- Evidence for the structure R_1 near 3.92 GeV/c², which may be *X*(3915) and χ_{c2} (3930)
- R₂ matches none of the known states (mass agrees with HQSS-predicted 2⁺⁺ partner of X(3872), but width conflicts)


Xiao-Rui LYU



Charmonium(-like) states in $B^+ \rightarrow K^+ \eta J/\psi$ JHEP 22, 046 (2020)

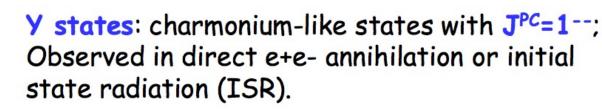
- With RUN 1+2 LHCb data, evidence is found for $\psi_2(3823) \rightarrow \eta J/\psi$ and $\psi(4040) \rightarrow \eta J/\psi$ $F_{\psi_2(3823)} = (5.95 \substack{+3.38 \\ -2.55}) \times 10^{-2},$ $F_{\psi(4040)} = (40.6 \pm 11.2) \times 10^{-2}.$
- Searches for the known XYZ states and provides UL on BF in $B^+ \rightarrow K^+X$

Xiao-Rui LYU

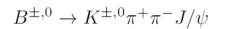
PIC2022, Tbilisi, Georgia

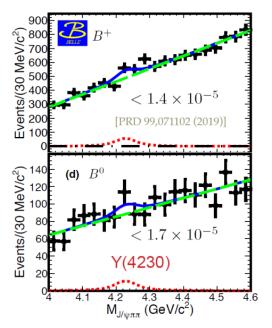
The Y states

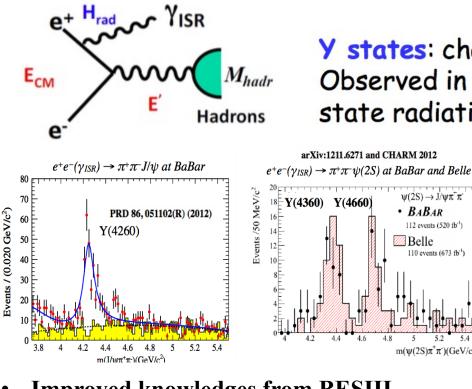
 $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

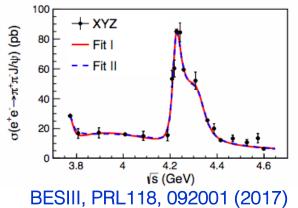

112 events (520 fb⁻¹)

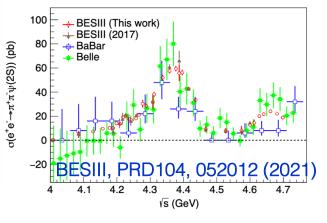
 $m(\psi(2S)\pi^+\pi^-)(GeV/c^2)$

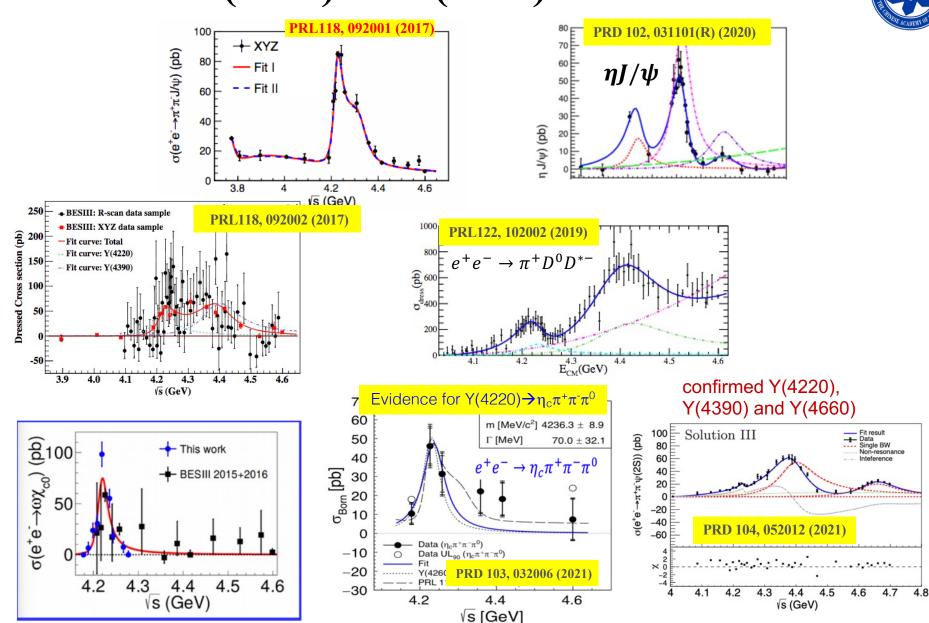

• BABAR


Belle 110 events (673 fb⁻¹)



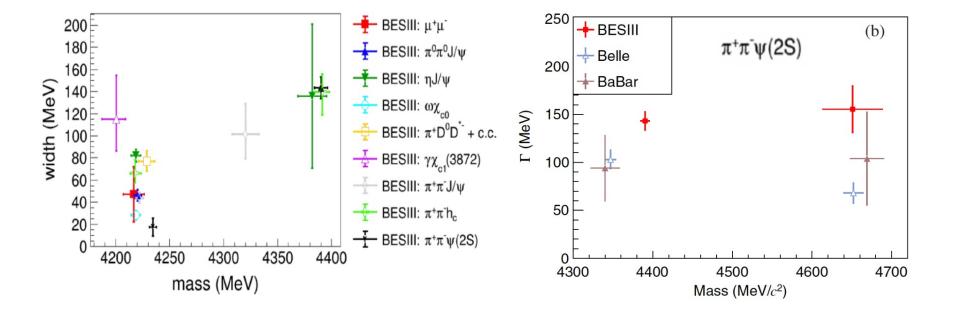

While not seen yet in B decays





Y(4260) → Y(4230) and new Y's

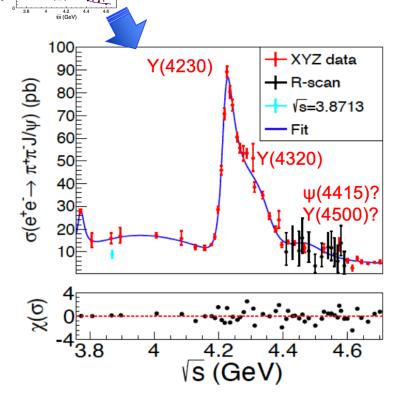
Xiao-Rui LYU


PIC2022, Tbilisi, Georgia

27

Y(4230), Y(43XX) and Y(4660)

PIC2022, Tbilisi, Georgia

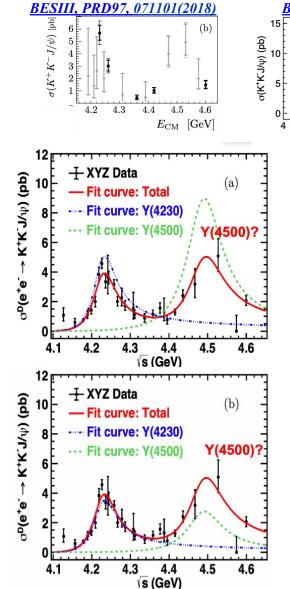

28

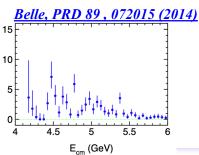
EVALUATE: Cross sections of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

arXiv:2206.08554

Higher statistics, higher precision, higher energies, better fit

- ✓ Y(4230) and Y(4320) observed with > 10σ
- ✓ Structure around 4 GeV better fit by a BW (before exp)
- ✓ Evidence ~3 σ of a structure at higher energies $\psi(4415)$? The new Y(4500)?
- ✓ By including the high energy state in the fit, the Y(4320) parameters change


Μ _{Y(4230)}	=	4221.4 ± 1.5 ± 2.0 MeV/c ²
Γ _{Y(4230)}	=	41.8 ± 2.9 ± 2.7MeV
Μ _{Y(4320)}	=	4298 ± 12± 26 MeV/c ²
Γ _{Y(4320)}	=	127 ± 17± 10 MeV


+ x y z

EVALUATE: Cross sections of $e^+e^- \to K^+K^-J/\psi$

arXiv:2204.07800

Investigating the strange content inside Y(4230)

 \checkmark First observation of Y(4230) \rightarrow K^+K^-J/\psi peak

$$0.02 < \frac{\mathcal{B}(Y(4230) \to K^+K^-J/\psi)}{\mathcal{B}(Y(4230) \to \pi^+\pi^-J/\psi)} < 0.26$$

✓ Resonance Y(4500) > 5 σ , consistent with the predictions of:

- 5S-4D mixing scheme (PRD99,114003 (2019))
- heavy-antiheavy hadronic molecules model (ProgrPhys41,65(2021))
- > Lattice QCD result for a $(csc\bar{s})$ state (PRD73,094510 (2006))

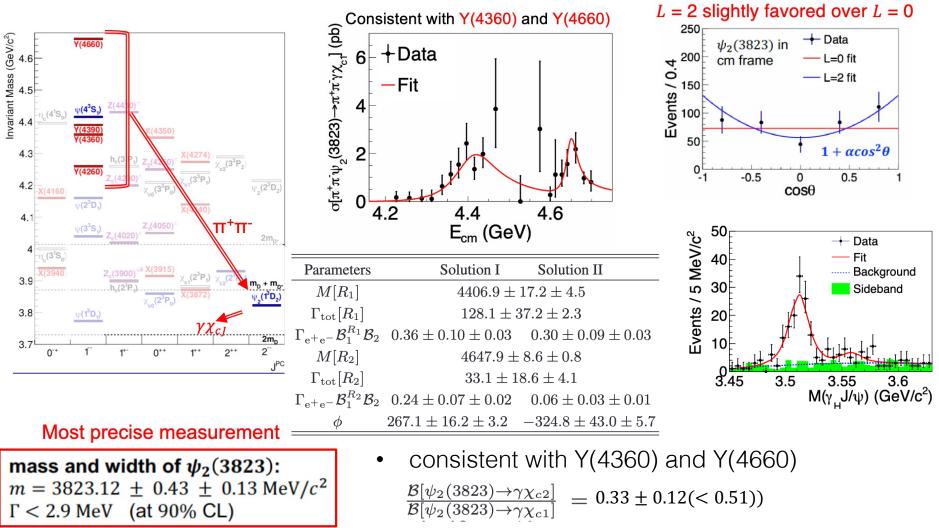
	Parameters	Solution I	Solution II
	$M({ m MeV})$	$4225.3 \pm 2.3 \pm 21.5$	
Y(4230)	$\Gamma_{tot}(MeV)$	$72.9\pm6.1\pm30.8$	
	$\Gamma_{ee} \mathcal{B}(\mathrm{eV})$	$0.42\pm0.04\pm0.15$	$0.29 \pm 0.02 \pm 0.10$
	$M({ m MeV})$	M(MeV) 4484.7 ± 13.3 ± 24.1	
Y(4500)	$\Gamma_{tot}(MeV)$	111.1 ± 30	$.1 \pm 15.2$
	$\Gamma_{ee} \mathcal{B}(\mathrm{eV})$	$1.35 \pm 0.14 \pm 0.06$	$0.41 \pm 0.08 \pm 0.13$
phase angle	$arphi(\mathrm{rad})$	$1.72 \pm 0.09 \pm 0.52$ $5.49 \pm 0.35 \pm 0.58$	

arXiv:2204.07800 submitted to PRL

Xiao-Rui LYU

PIC2022, Tbilisi, Georgia

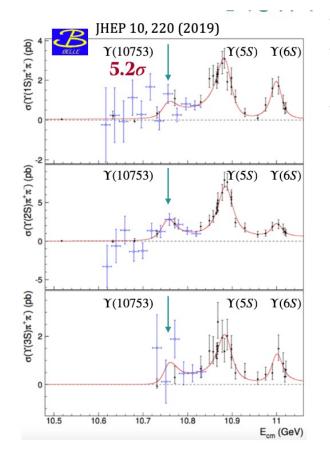
=


EXAMPLE Similar Cross sections of $e^+e^- \rightarrow \pi^+\pi^-\psi(3823)$

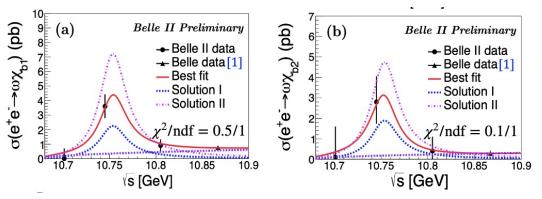
arXiv:2203.05815

S-wave $\pi^+\pi^-$, such as $f_0(500)$

first observation of vector Y states decaying to D-wave charmonium state



Xiao-Rui LYU

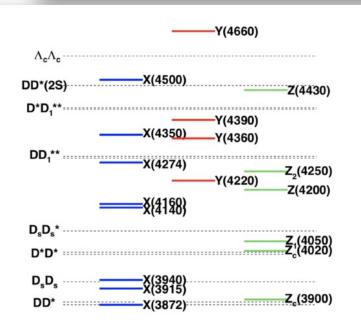

Studies on $\Upsilon(10753)$

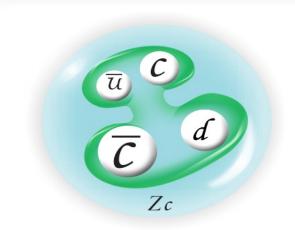
	$\Upsilon(10860)$	$\Upsilon(11020)$	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

- Belle observed $\Upsilon(10753)$ in $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS)$
- Considered as conventional bottomonium or exotic hadron
- Expected to decay into $\omega \chi_{bJ}$ with BF of 10^{-3} if mixing of 4S and 3D bottomonium states.

- Belle II observed peak cross sections of $e^+e^- \rightarrow \omega \chi_{bJ}$ at $\Upsilon(10753)$, while no obvious peak at $\Upsilon(10860)$
 - $\frac{\Gamma_{ee}\mathscr{B}(\Upsilon(10753) \to \omega \chi_{b1})}{\Gamma_{ee}\mathscr{B}(\Upsilon(10753) \to \omega \chi_{b2})} \sim 1.0 \text{ agrees with the expectation for NRQCD}$
 - $\frac{\Gamma_{ee}\mathscr{B}(\omega\chi_{b1/2})}{\Gamma_{ee}\mathscr{B}(\pi^+\pi^-\Upsilon(2S))^{[2]}} \sim 1.5 \text{ for } \Upsilon(10753) \text{ and } \sim 0.1 \text{ for } \Upsilon(10860)$

implying hadro-bottomonium interpretation of $\Upsilon(10753)$

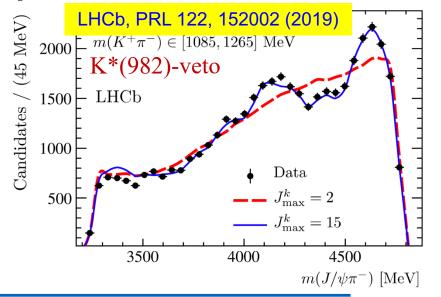

Xiao-Rui LYU

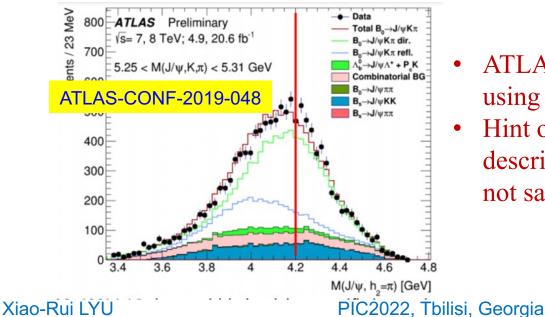

A CODEN OF ALL

The Zc states [ccud]

from S. L. Olsen, arXiv:1511.01589, arXiv:1812.10947

$Z_{c}^{+}(3900)$	3890 ± 3	33 ± 10	1+-	$Y(4260) o \pi^- + (J/\psi \pi^+)$	BESIII [49], Belle [50]
				$Y(4260) \to \pi^- + (D\bar{D}^*)^+$	BESIII [69]
$Z_{c}^{+}(4020)$	4024 ± 2	10 ± 3	$1(?)^{+(?)-}$	$Y(4260) \to \pi^- + (h_c \pi^+)$	BESIII [51]
				$Y(4260) o \pi^- + (D^* \bar{D}^*)^+$	BESIII [52]
$Z_1^+(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	$?^{?+}$	$B \to K + (\chi_{c1} \pi^+)$	Belle [53], BaBar [66]
$Z^{+}(4200)$	$4196\substack{+35 \\ -32}$	$370\substack{+99 \\ -149}$	1^{+-}	$B \to K + (J/\psi \pi^+)$	Belle [62]
$Z_2^+(4250)$	$4248^{+185}_{-\ 45}$	$177^{+321}_{-\ 72}$	$\mathbf{S}_{\mathbf{S}+}$	$B ightarrow K + (\chi_{c1} \pi^+)$	Belle [53], BaBar [66]
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1+-	$B \to K + (\psi' \pi^+)$	Belle [54, 56, 57], LHCb [58]
				$B \to K + (J\psi \pi^+)$	Belle [62]


Most of them are close to the mass thresholds of charmed meson pairs

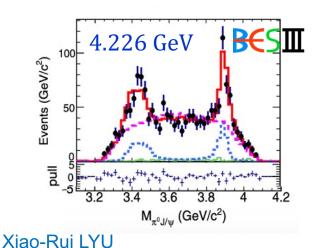

Xiao-Rui LYU

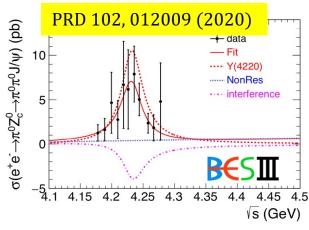
Confirmed exotic contribution in $B^0 \rightarrow J/\psi K^+\pi^-$


- Amplitude analysis of $B^0 \rightarrow J/\psi K^+\pi^-$ at LHCb using RUN1 data
- Data inconsistent with K*-only contributions by 10 σ
- New Zc components needed around 4200 MeV and 4600 MeV

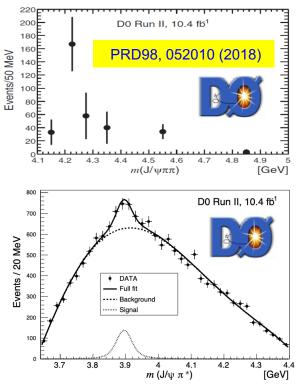
- ATLAS studied ~10K $B^0 \rightarrow J/\psi K^+\pi^$ using RUN1 data
- Hint of Zc(4200) contribution, as data
 description w/o exotic contributions is
 not satisfactory

Zc(3900): correlated with the Y(4260)



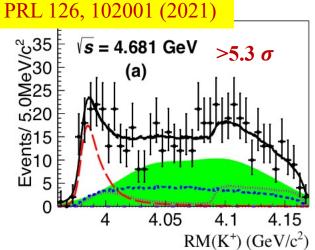

• D0 presented evidence for the charged Zc(3900) decaying to $J/\psi\pi$ in semi-inclusive weak decays of *b*-flavored hadrons.

• The signal is correlated with a parent $J/\psi \pi^+\pi^-$ system in the invariant mass range 4.2–4.7 GeV, that would include the exotic structure Y(4260)


Amplitude analysis of $e^+e^- \rightarrow \pi^0 Z_c(3900)^0$ at BESIII

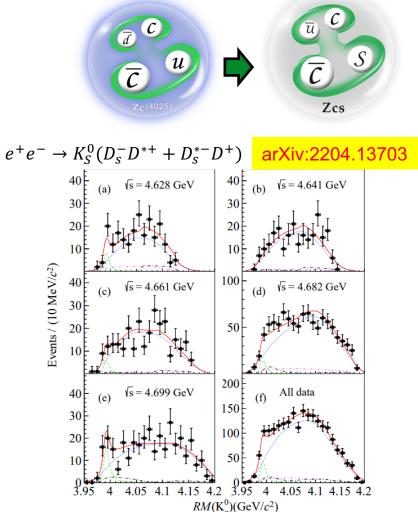
- Simultaneous PWA fit of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ to the four energy points between 4.226 GeV and 4.258 GeV
- The spin-parity of $Z_c(3900)^0$ determined to be 1⁺

PIC2022, Tbilisi, Georgia



- Compatible with the Y(4220) line shape
- Indication of correlation between the production of the Y(4220) and Zc(3900)

35

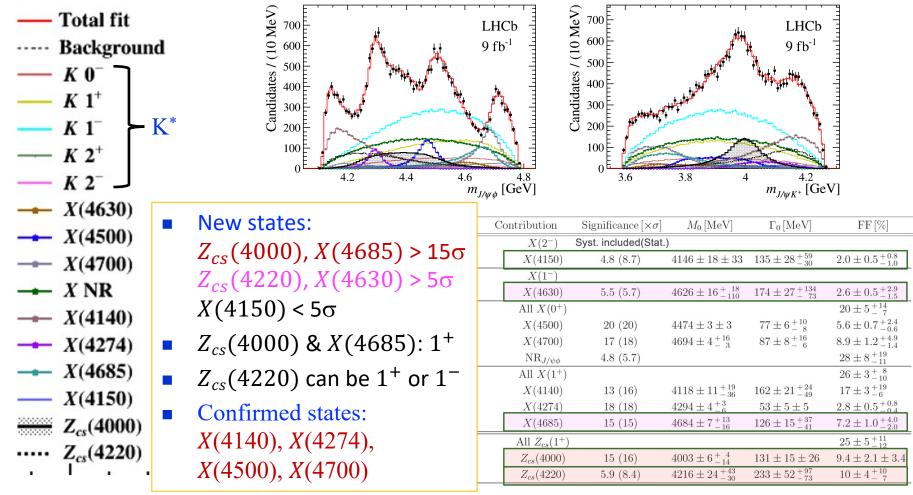

I Zcs: SU(3) partner of Zc state

- Important to look for Z_{cs} , the SU(3) partners of $X(3872)/Z_c(3900)$
- BESIII analyzes the process of $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$ with 3.7fb⁻¹ data at energies between 4.628 and 4.698GeV

• A fit of J^P=1⁺ S-wave Breit-Wigner with mass dependent width returns:

 $\begin{array}{c|c} \text{Mass (MeV}/c^2) & \text{Width (MeV)} \\ \hline Z_{cs}(3985)^0 & 3992.2 \pm 1.7 \pm 1.6 & 7.7^{+4.1}_{-3.8} \pm 4.3 \\ Z_{cs}(3985)^+ & 3985.2^{+2.1}_{-2.0} \pm 1.7 & 13.8^{+8.1}_{-5.2} \pm 4.9 \end{array}$

First candidate of the hidden-charm tetraquark with strangeness, and isospin triplet confirmed!


Xiao-Rui LYU

Amplitude analysis of $B^+ \rightarrow J/\psi \phi K^+$

- With Run 1 $B^+ \rightarrow I/\psi \phi K^+$ data, LHCb performed 1st amplitude fit and observed X(4140), X(4274), X(4500) and $X(4700) \rightarrow [c\bar{c}s\bar{s}]$ tetraquark?
- **LHCb RUN 1+2**: 24K signals, about 6× larger than RUN 1 PRL127, 082001 (2021)

Xiao-Rui LYU

LHCh

LHCb X(4740) structure with [$c\bar{c}s\bar{s}$] JHEP02, 024 (2021)

LHCb

5.45

 $\left[\text{GeV}/c^2\right]$

LHCb

5.4

4.7

Study of $B_S^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ using LHCb RUN 1+2 data: 26.5K signals

Observations of $B_S^0 \rightarrow X(3872)K^+K^-$ and X(3872)φ

 $Candidates/(5 MeV/c^2)$ $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^ Yield/(15 MeV/c^2)$ LHCb 150 Simulation 5.3 5.35 50 $m_{\mathrm{J/}\!\psi\pi^+\pi^-\mathrm{K^+K^-}}$ $^{4.8}$ [GeV/ c^2] $field/(15 \text{ MeV}/c^{-1})$ 4.2 4.4 4.6 $m_{\mathrm{J/\psi}\phi}$ 100 Candidates/(10 MeV) 80 $J/\psi\phi$ structure LHCb 120 40 5.3 σ 20 20 4.5 4.6 $m_{\mathrm{J/\psi}\phi}$ 4700 4800 $m_{J/\psi\phi}$ [MeV] 4100 4200 4300 4400 4500 4600

 $\mathcal{R}^{\chi_{c1}(3872)\phi}_{\psi(2S)\phi}$ $(2.42 \pm 0.23 \pm 0.07) \times 10^{-2}$ = $\mathcal{R}_{K^+K^-} = 1.57 \pm 0.32 \pm 0.12$, Yield/(15 MeV/ c^2) LHCb 40<u>–</u> $B_s^0 \rightarrow \chi_{c1}(3872)\phi$ $B^0_s \!\rightarrow \chi_{c1}(3872) K^+ K^-$ 30F 20 10 1.2 1.4 $\left[\text{GeV}/c^2\right]$ $m_{
m K^+K^-}$

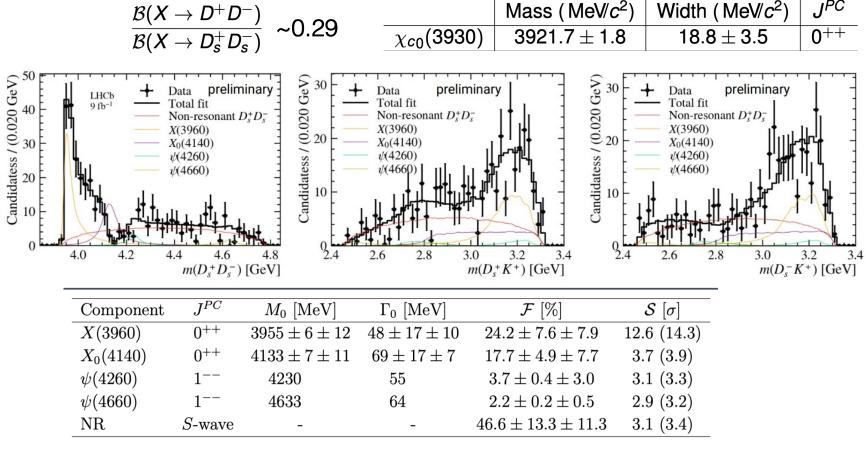
1D fit using S-wave Breit-Wigner $m_{X(4740)} = 4741 \pm 6 \pm 6 \text{ MeV}$ $\Gamma_{X(4740)} = 53 \pm 15 \pm 11 \text{ MeV}$

Systematic uncertainties:

- Shape of underlying non-X
- Alternative P-wave or D-wave BW
- > Inteference $\mathcal{F}_{\mathrm{S}}(m_{\mathrm{J/\psi}\phi}) \propto |\mathcal{A}(m_{\mathrm{J/\psi}\phi}) + b(m_{\mathrm{J/\psi}\phi}) \mathrm{e}^{i\varphi}|^2$

 $^{4.8}_{X(4700)}$ [GeV/ c^2] X(4740): could be the X(4700) in $B^+ \rightarrow J/\psi \phi K^+$

Xiao-Rui LYU


New $[c\bar{c}s\bar{s}]$ state in $D_s^+D_s^-$

LHCb-PAPER-2022-018 LHCb-PAPER-2022-019

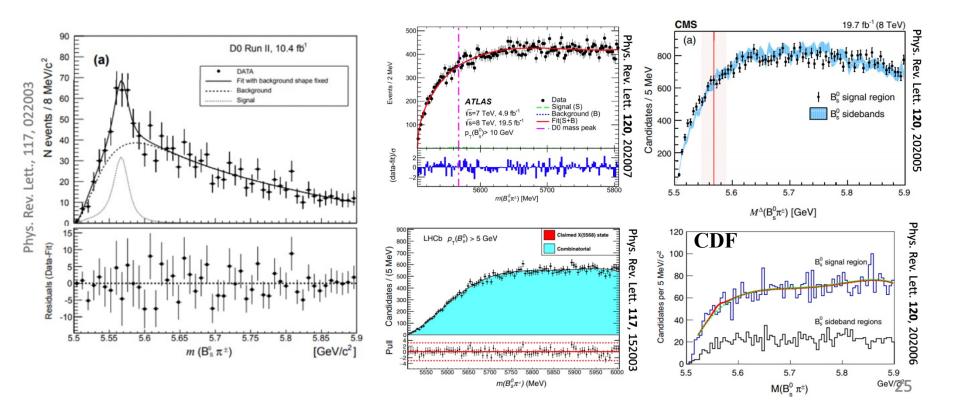
JPC

- Study of $B^+ \rightarrow D_s^+ D_s^- K^+$ with 9 fb⁻¹ at LHCb,
- Near threshold structure X(3960) 12σ , $J^P = 0^{++}$ •
- X(4140) accounts for the dip around 4.14 GeV
- If $\chi(3960)$ and $\chi_{c0}(3930)$ the same particle, they could be exotic $[c\bar{c}s\bar{s}]$.

Xiao-Rui LYU

PIC2022, Tbilisi, Georgia

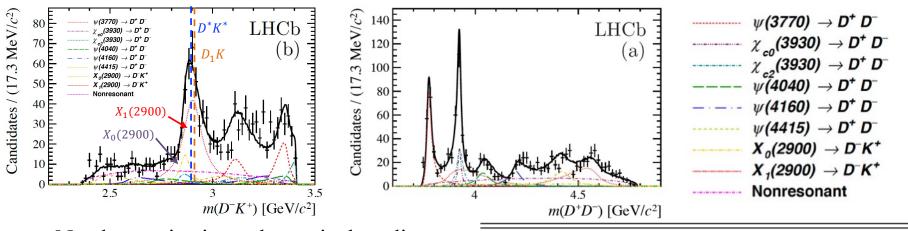
39



Open-flavor exotic mesons

Study on X(5568) in $B_{\rm s}\pi^+$

- D0 claimed evidence for the X(5568) in decaying to $B_s \pi^+$, interpreted as tetraquark state [*bsud*]
- But not seen in other experiments



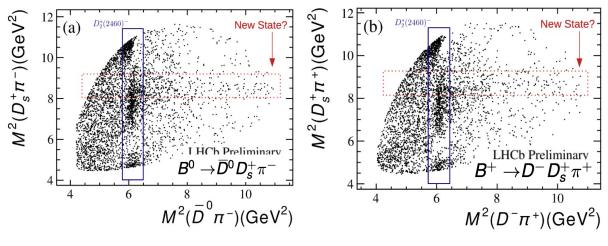
Observation of open-charm exotic state X(2900) [c̄sud] PRL125, 242001 (2020) PRD102, 112003 (2020)

- $B^+ \to D^+ D^- K^+ \text{ decays with RUN 1+2 data}$
 - **Ideal channel to search for the open-charm tetraquark**
 - Contributions: no Fav D_{sI}^+ , Sup charmonium, Fav open-charm tetraquark(?)
- Observation of two D^-K^+ states (BW) at ~2.9 GeV, $J^P=0^+$, 1⁻

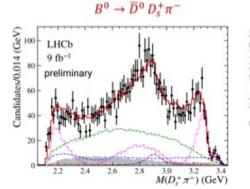
- Need more intricate theoretical studies
 - Very close to D^*K^* , D_1K thresholds. Rescattering ?

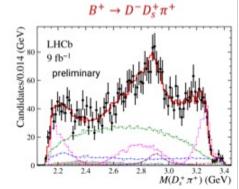
Resonance	Mass (GeV/ c^2)	Width (MeV)
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$

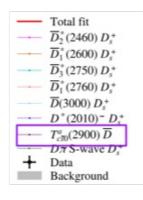
States	Mass/MeV	Width/MeV	Fraction/%	
$X_0(2900)$	2866 ± 7 ± 2	$57 \pm 12 \pm 4$	$5.6 \pm 1.4 \pm 0.5$	Ouite lar
$X_1(2900)$	$2904\pm5\pm1$	$110 \pm 11 \pm 4$ ($30.6 \pm 2.4 \pm 2.1$	Quite large


Candidates for the 1st open-charm tetraquarks (four different flavors)!

Observation of a doubly charged tetraquark $T_{c\bar{s}0}(2900)^{++}$ [$c\bar{s}u\bar{d}$] and its neutral partner $T_{c\overline{s}0}(2900)^0 [c\overline{s}\overline{u}d]$ LHCb-PAPER-2022-026 LHCb-PAPER-2022-027


First simultaneous amplitude analysis of $B^+ \rightarrow D^- D_s^+ \pi^+ \&$ $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^+$ with RUN 1+2 9 fb⁻¹ data

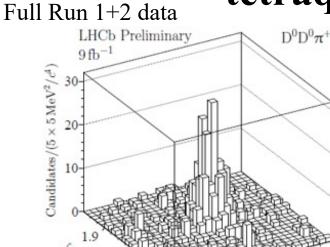

 $D_s\pi$ mass spectra well described by adding $J^P = 0^+$ $(>7.5 \sigma) T^{a}_{c\bar{s}0}(2900) > 9 \sigma$ $M = 2.908 \pm 0.011 \pm 0.020 \,\text{GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.011 \, \text{GeV}$

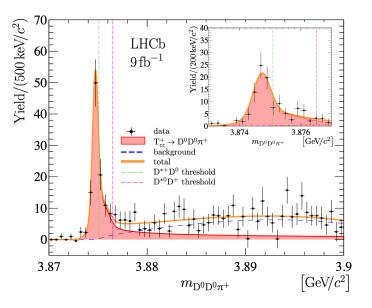


Separate resonance fits:

• $T_{c\bar{s}}^{a0}$: $m = 2892 \pm 14 \pm 15$ MeV, $\Gamma = 119 \pm 26 \pm 12$ MeV; • $T_{c\bar{s}}^{a++}$: $m = 2921 \pm 17 \pm 19$ MeV, $\Gamma = 137 \pm 32 \pm 14$ MeV

Xiao-Rui LYU


LHCb

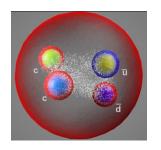

Observation of doubly-charm tetraquark state T_{cc}^+ [$cc\overline{u}d$]

arXiv:2109.01038 Nature Comm.13, 3351 (2022)

Fit with relativistic *P*-wave **BW** function

 $\delta m\equiv m_{\mathrm{T}^+_{\mathrm{cc}}}-(m_{\mathrm{D}^{*+}}+m_{\mathrm{D}^0})$

 $T_{cc}^+ \rightarrow D^0 D^0 \pi^+ \quad \delta m_{BW} = -273 \pm 61 \pm 5^{+11}_{-14} \text{ keV}/c^2, \Gamma_{BW} = 410 \pm 165 \pm 43^{+18}_{-38} \text{ keV}$


 $[GeV/c^2]$

 $[GeV/c^2]$

mK2 =2

mKint

 \triangleright consistent with expectation for ground isoscalar $T_{cc}^+(cc\bar{u}\bar{d})$ state with $J^P = 1^+$

Xiao-Rui LYU

mK1 = #

 GeV/c^2

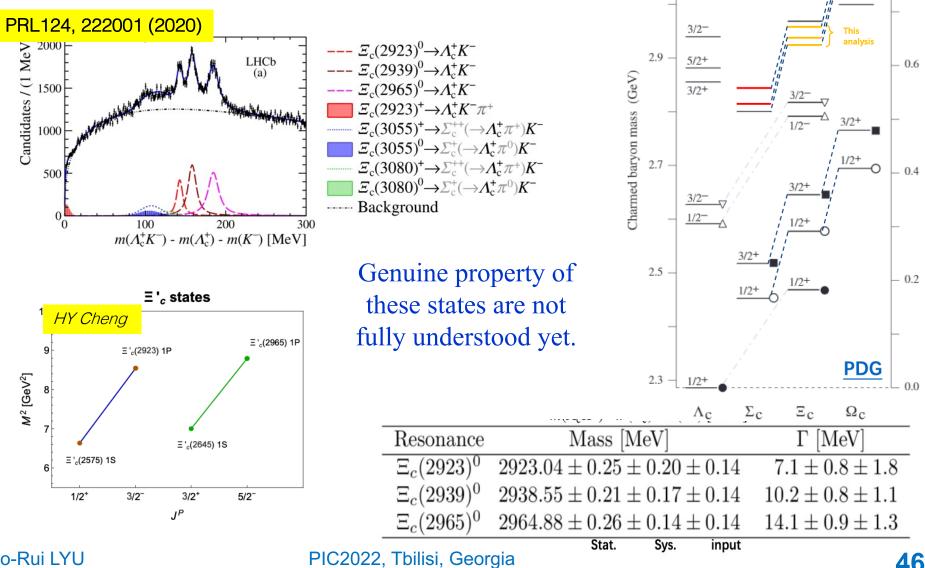
undidat

Heavy baryons

Xiao-Rui LYU

PIC2022, Tbilisi, Georgia

45

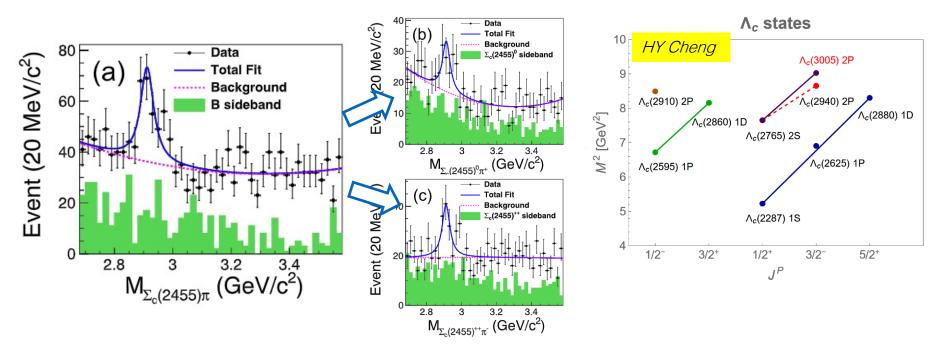

Observation of new Ec baryons

0.8

3.1 -

- Three excited Ξ_c^0 are observed in decaying into $\Lambda_c^+ K^-$
- Using LHCb RUN 2 data at 13 TeV

Xiao-Rui LYU

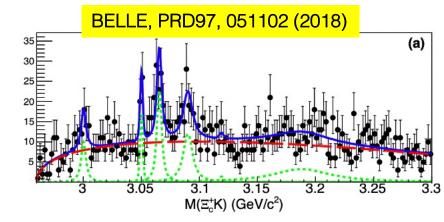


Evidence of new excited charmed baryon Λ_c^*

arXiv: 2206.08822

- Study on $\bar{B}^0 \to \Sigma_c \ (2455)^{0,++} \pi^{\pm} \bar{p}$ with Belle data
- Combined fit to Σ_c (2455)^{0,++} π^{\pm} mass spectra

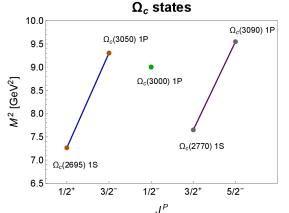
State	Mass (MeV/c^2)	Width (<i>MeV</i>)
$\Lambda_{c}(2880)^{+}$	2881.63 ± 0.24	$5.6^{+0.8}_{-0.6}$
$\Lambda_{c}(2940)^{+}$	2939.6 ^{+1.3} -1.5	20 ⁺⁶ ₋₅
$\Lambda_c(2910)^+$ (this analysis)	2913.8 ± 5.6 ± 3.8	$51.8 \pm 20.0 \pm 18.8$

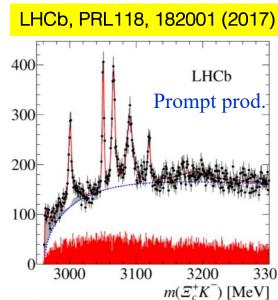

a good candidate for $\Lambda_c \left(\frac{1}{2}, 2P\right)$ [arXiv:2207.03022]

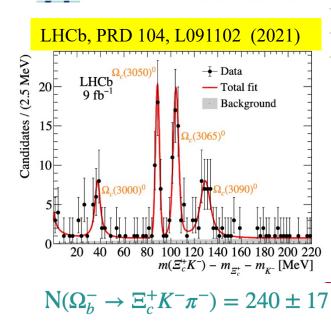
significance with 4.2 σ after considering possible $\Lambda_c(2880)$ and $\Lambda_c(2940)$ contributions

Xiao-Rui LYU

R AA 27 THE REPORT OF THE REPO

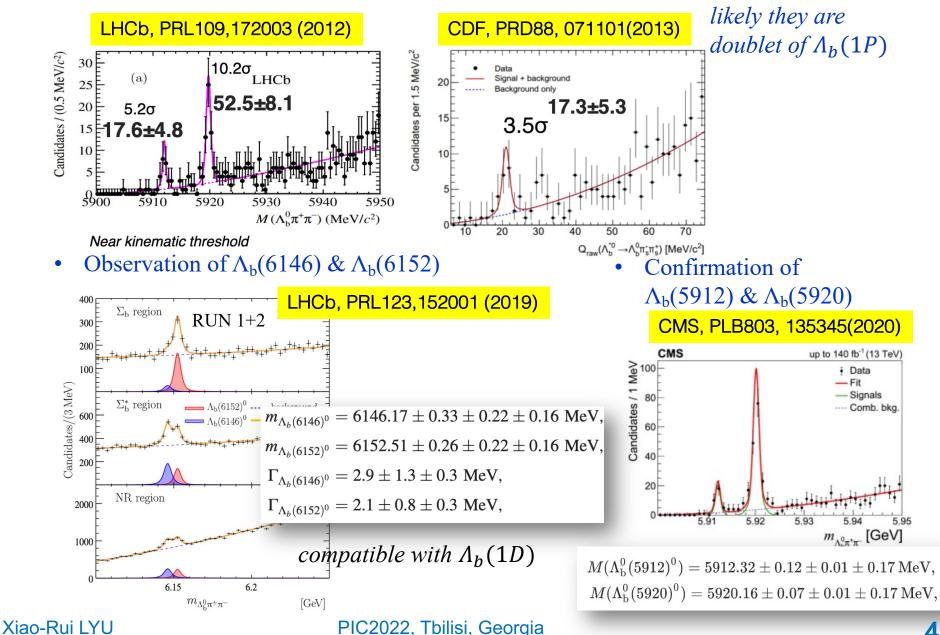

Confirmation of the excited Ω_c states




	Prompt		<i>b</i> -decays	
Resonance	Mass [MeV]	Γ [MeV]	Mass [MeV]	Γ[MeV]
$\Omega_c(3000)^0$	3000.4 ± 0.2 ± 0.1	$4.5 \pm 0.6 \pm 0.3$	2999.2 ± 0.9 ± 0.9	4.8 ± 2.1 ± 2.5
$\Omega_c(3050)^0$	3050.2 ± 0.1 ± 0.1	0.8 ± 0.2 ± 0.1	3050.1 ± 0.3 ± 0.2	< 1.6 @ 95% CL
$\Omega_c(3065)^0$	3065.6 ± 0.1 ± 0.3	3.5 ± 0.4 ± 0.2	3065.9 ± 0.4 ± 0.4	1.7 ± 1.0 ± 0.5
$\Omega_{c}(3090)^{0}$	3090.2 ± 0.3 ± 0.5	8.7 ± 1.0 ± 0.8	3091.0 ± 1.1 ± 1.0	7.4 ± 3.1 ± 2.8

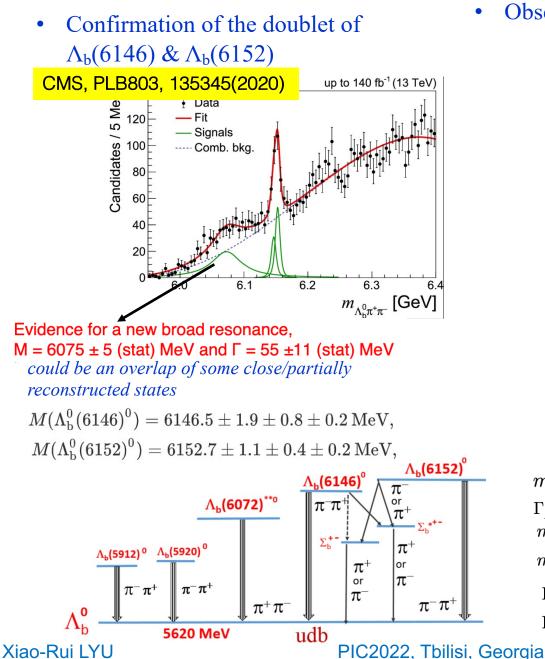
four of the five observed states are confirmed in b-baryon

decays and e^+e^- collisions

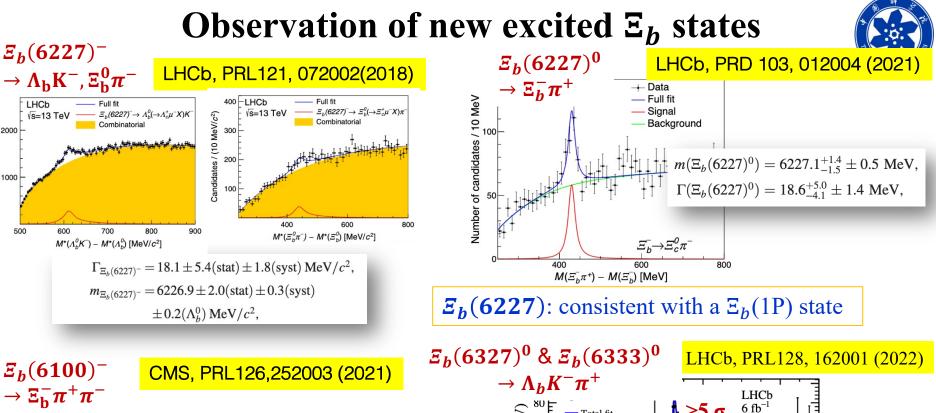

Xiao-Rui LYU

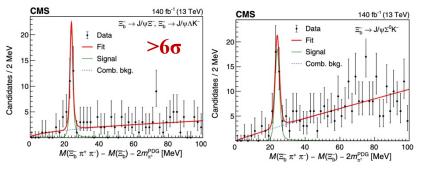
PIC2022, Tbilisi, Georgia

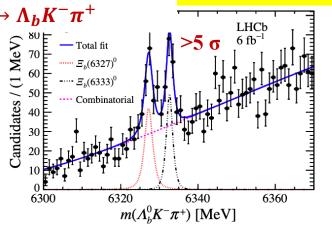
48


New excited Λ_b^* states in $\Lambda_b \pi^+ \pi^-$ (1)

• $\Lambda_b(5912) \& \Lambda_b(5920)$ were observed at LHCb and later $\Lambda_b(5920)$ confirmed by CDF




New excited Λ_b^* states in $\Lambda_b \pi^+ \pi^-$ (2)



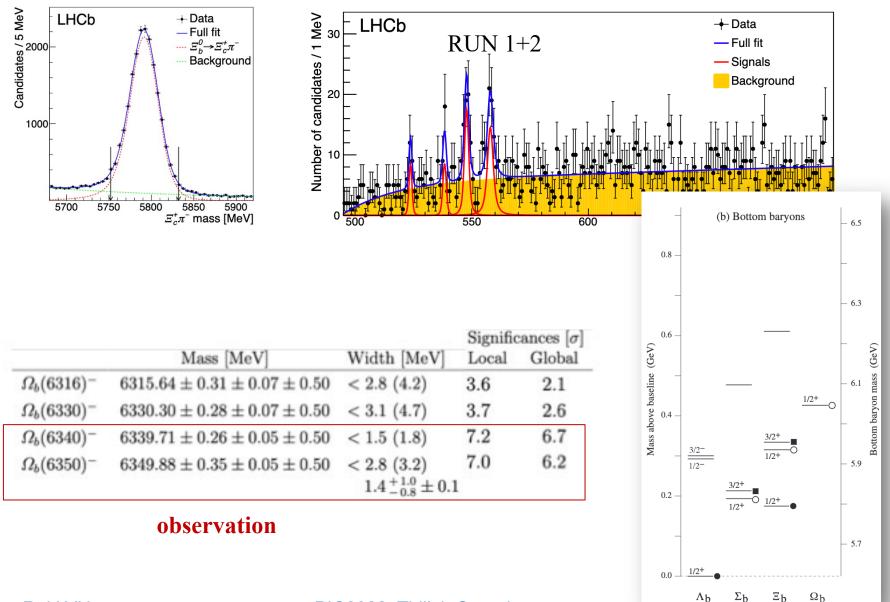
Observation of the broad resonance LHCb, JHEP06, 136(2020) **RUN 1+2** 200 $\Lambda_{\rm b}^0 \rightarrow J/\psi\,{
m pK^-}$ LHCb $\Lambda^0_h \pi^+ \pi$ $\Lambda_{\rm b}^{\rm b}(6146)^0$ $\Lambda_{\rm b}(6152)^0$ 150 100 backgroun otal backgroun 50 $\Lambda_{
m b}^0 \rightarrow \Lambda_c^+ \pi^-$ LHCb 400 background otal background -200 [GeV $m_{\Lambda^0_{
m t}\pi\pi}$ 400 $\Lambda^0_{
m b}
ightarrow \Lambda^+_{
m c} \pi^-$ LHCb $\Lambda_{\rm b}(5920)$ background Precise meas. of 200 $\Lambda_{\rm b}(5912) \& \Lambda_{\rm b}(5920)$ 100 5.91 5.92 $m_{\Lambda_{\rm b}^{**0}} = 6072.3 \pm 2.9 \pm 0.6 \pm 0.2 \,{\rm MeV} \,\Lambda_{b}(2S)$? $\Gamma_{\Lambda_{\rm b}^{**0}} = 72 \pm 11 \pm 2 \text{ MeV}$ $m^{-}_{\Lambda_{
m b}(5912)^0}\,=\,5912.21\pm0.03\pm0.01\pm0.21\,{
m MeV}\,,$ $m_{\Lambda_{\rm b}(5920)^0}\,=\,5920.11\pm0.02\pm0.01\pm0.21\,{\rm MeV}\,,$ $\Gamma_{\Lambda_{\rm b}(5912)^0}\,<\,0.25\,(0.28)\,{\rm MeV}\,,$ $\Gamma_{\Lambda_{\rm b}(5920)^0} \, < \, 0.19 \, (0.20) \, {\rm MeV} \, ,$

 $M = 6100.3 \pm 0.2 \pm 0.1 \pm 0.6 \text{ MeV}$ $\Gamma < 1.9$ MeV at 95% CL

 $m[\Xi_b(6327)^0] = 6327.28^{+0.23}_{-0.21} \pm 0.12 \pm 0.24$ MeV, $m[\Xi_b(6333)^0] = 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22$ MeV, consistent with the 1D excited $\boldsymbol{\Xi}_{\boldsymbol{h}}$ doublets.

Xiao-Rui LYU

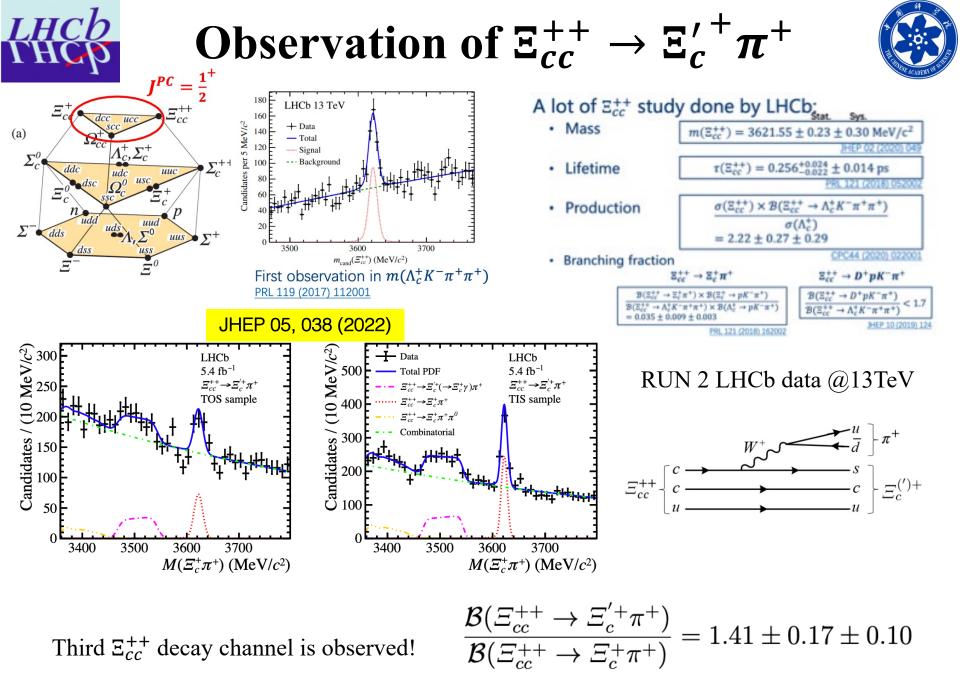
LHCb


Candidates / (4 MeV/*c*²) 000 000

500

Observation of new excited Ω_b states

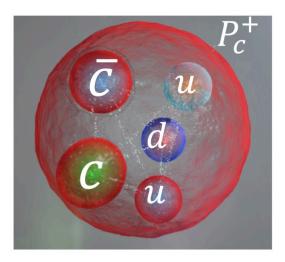
PRL124, 082002 (2020)



Xiao-Rui LYU

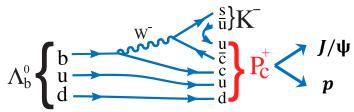
LHCb

PIC2022, Tbilisi, Georgia


52

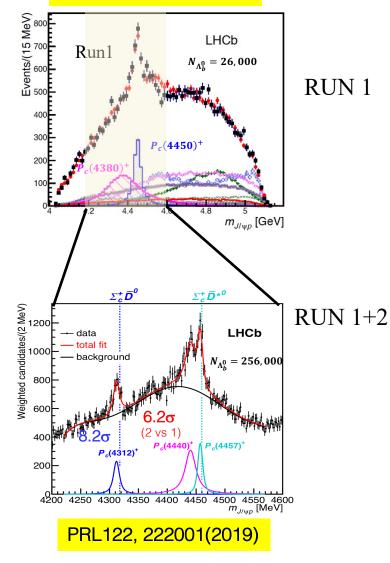
Xiao-Rui LYU

Pentaquark states



Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays

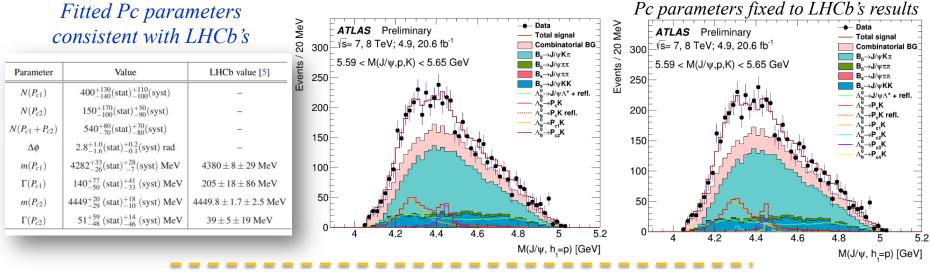
• Pentaquarks [$c\bar{c}uud$] were first observed in 2015 by LHCb in $\Lambda_b^0 \rightarrow J/\psi pK^-$ decays



- New pentaquark and fine structure were discovered in 2019 with x10 signals
 - Three narrow pentaquarks just below $\Sigma_c^+ D^{(*)0}$ thresholds, favors molecular picture

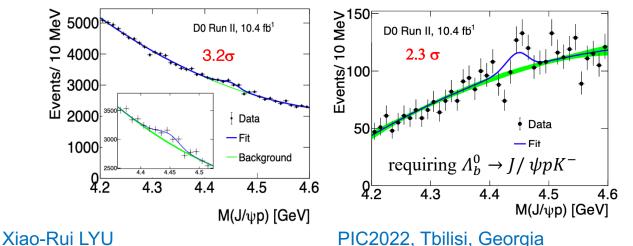
State	M [MeV]	Γ [MeV] (95% CL)
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5} \ (< 27)$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1} (< 49)$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-1.9} (< 20)$

- A lot of open questions:
 - J^P , more decay modes,...?
 - SU(3) partners, hidden-bottom pentaquarks?



Xiao-Rui LYU

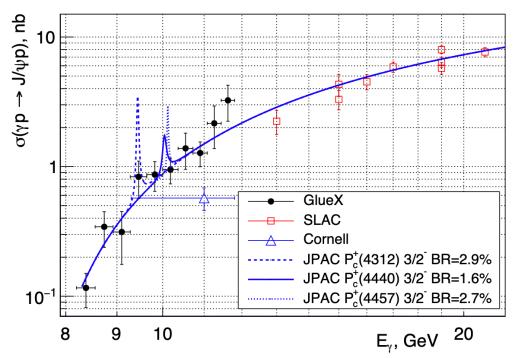
Pc confirmations in *b* decays at ATLAS and D0


- ATLAS studied ~1K $\Lambda_b^0 \rightarrow J/\psi pK^-$ using RUN1 data
- Pc states are needed to describe data: two Pc's fit (left) and four Pc's fit (right)

• D0 studied $J/\psi p$ in *b*-decays with displaced vertex

D0, arXiv:1910.11767

• A sum of Pc(4440) and Pc(4457) confirmed in b-decays: major contributions from b SL decays


- Pc(4312) is not evident
- No Pc states seen in prompt production

Guite Pentaquark photoproduction at GlueX

PRL123, 072001 (2019)

- Photoproduction: $\gamma p \rightarrow P_c \rightarrow J/\psi p$ studied with GlueX data in 2016 and 2017
- Combined data from SLAC and Cornell

Model-dependent upper limits at the 90% C.L. are et for cross section times branching fraction for the Pc states:

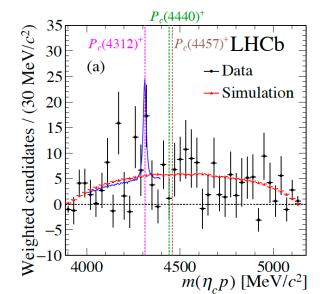
> 4.6 nb for P_c (4312) 1.8 nb for P_c (4440) 3.9 nb for P_c (4457)

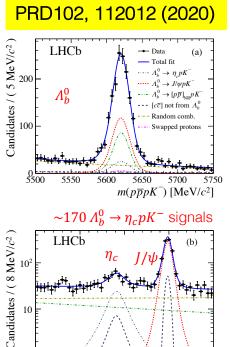
The results do not exclude the molecular model, but are an order of magnitude lower than the predictions in the hadrocharmonium scenario.

Xiao-Rui LYU

LH

Search for Pc in $\Lambda_b^0 \to \eta_c p K^-$


• If $P_c(4312)^+$ is $\Sigma_c \overline{D}$ molecule, $R(P_c(4312)^+) = \frac{\mathcal{B}(P_c(4312)^+ \to \eta_c p)}{\mathcal{B}(P_c(4312)^+ \to J/\psi p)} \sim 3$ is predicted


[PRD 100, 034020 (2019); 100, 074007 (2019); 102, 036012 (2020)]

- LHCb run2 data (5.5 fb⁻¹): η_c reconstructed using $\eta_c \rightarrow p\bar{p}$
- Study background-subtracted $\eta_c p$ mass spectrum

No significant $P_c(4312)^+$ contribution (~2 σ)

 $R(P_c(4312)^+) < 0.24 @ 95\%$ C. L. (Uncertainty is too large to give any conclusion yet)

2800

2900

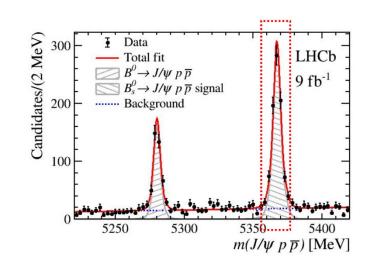
3000

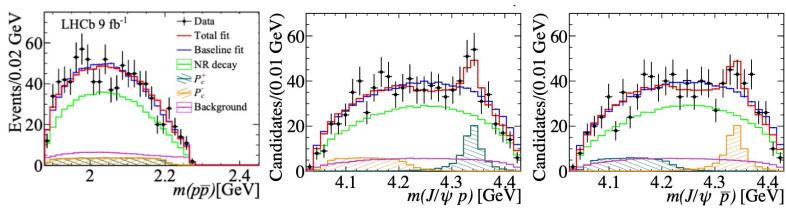
3100

 $m(p\overline{p})$ [MeV/ c^2]

3200

Pc state in $B_S^0 \to J/\psi p\overline{p}$


PRL 128, 062001 (2022)


- RUN 1+2 data, untagged *B* decay, with CP conservation, ~800 signals
- 4D amplitude analysis implemented
- Evidence for a new pentaquark-like state Pc:

 $M_{P_c} = 4337^{+7}_{-4}(\mathrm{stat})^{+2}_{-2}(\mathrm{syst}) \,\mathrm{MeV}$ $\Gamma_{P_c} = 29^{+26}_{-12}(\mathrm{stat})^{+14}_{-14}(\mathrm{syst}) \,\mathrm{MeV}$

1± 3±

• $3.1 \sim 3.7\sigma$ for $(\frac{1^{\pm}}{2}, \frac{3^{\pm}}{2})$ hypothesis; statistics not sufficient for determining the spin-parity

• No evidence for $P_c(4312)$, glueball $f_J(2220)$, $p\bar{p}$ enhancement

Evidence for the hidden-charm strange

 $\frac{1}{8}K$

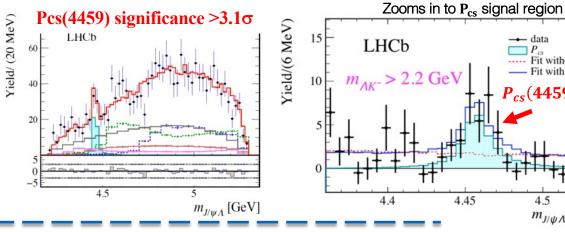
4.45

data

4.5

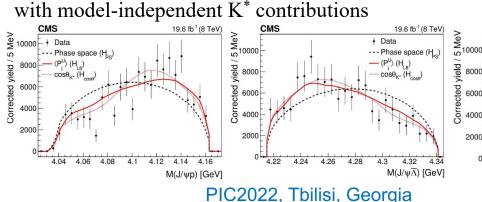
 $m_{J/\psi A}$ [GeV]

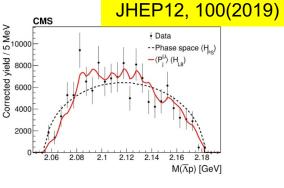
- Fit without P

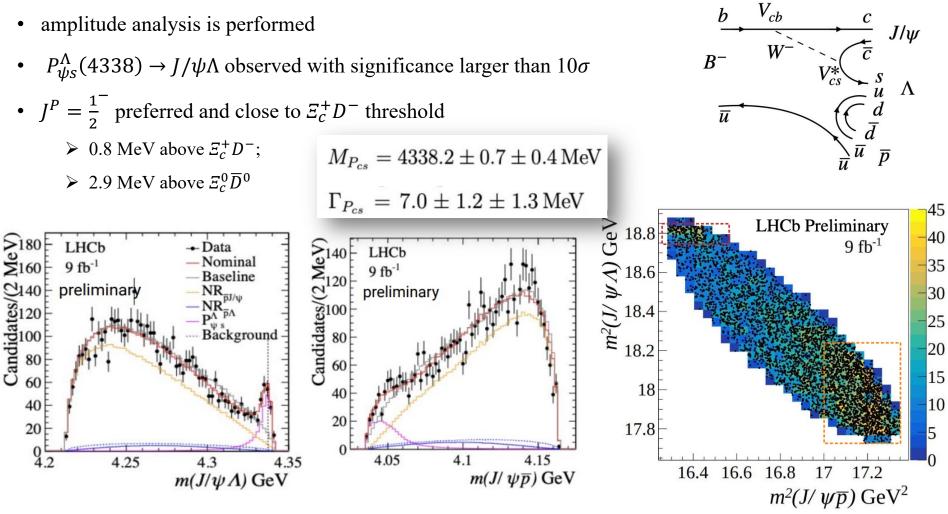

Fit with P.

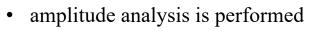
pentaquark

- Aim to search for P_{cs} , a SU(3) partner of P_{c} state
- RUN 1+2 data: detect ~1750 $\Xi_h^- \rightarrow J/\psi \Lambda K^-$ signals
- 6D amplitude analysis is performed
- Statistics not enough for I^P determination


 $m(P_{cs}^{0}) = 4458.8 \pm 2.9^{+4.7}_{-1.1} \text{ MeV}$ $\Gamma(P_{CS}^{0}) = 17.3 \pm 6.5^{+8.0}_{-5.7} \text{ MeV}$


 $P_{cs}(4459)^0$ mass close to $\Xi_c \overline{D}^*$ threshold, two I = 0states with $\frac{1}{2}$ or $\frac{3}{2}$ More data needed to resolve




 Ξ_b^-

- CMS
- $B^- \rightarrow I/\psi \Lambda \bar{p}$ decays with 19.6 fb⁻¹ CMS data It finds that data is inconsistent with purely phase space distributions, but consistent

LHCb

Observation of the hidden-charm

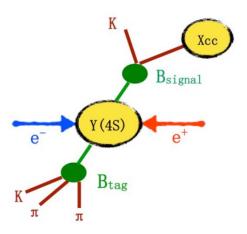
strange pentaquark

narrow structure in $J/\psi \Lambda$ in $B^- \rightarrow J/\psi \Lambda \bar{p}$ decays, with 9 fb⁻¹ LHCb data

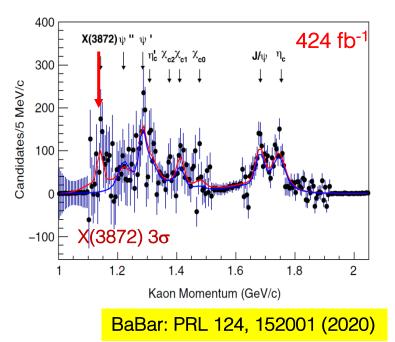
Summary

- An exciting period of finding new (heavy) hadrons
- Many new hadrons are observed at different experiments
 - trend of over-populated singly-charm and singly-bottom baryon states: some could be exotic candidates?
 - further understanding of X/Y/Z ($c\bar{c}q\bar{q}$) states: a new member Y(4500)
 - hidden-charm tetraquark states: Zcs(3985), Zcs(4000) and Zcs(4220) [ccus]; X(6900), X(6600) [cccc]; X(4630), X(4685), X(4740), X(3960) [ccss];
 - singly charmed tetraquark states: **X(2900)** $[\bar{c}\bar{s}ud]; T_{c\bar{s}0}(2900)^{++} [c\bar{s}u\bar{d}]; T_{c\bar{s}0}(2900)^{0} [c\bar{s}\bar{u}d]$
 - doubly charmed tetraquark state: $T_{cc}^+ [cc\overline{u}\overline{d}]$
 - observation/evidence of new pentaquark states: Pc(4312), Pc(4440), Pc(4457) and Pc(4337) [$c\overline{c}uud$]; $P_{cs}(4338)$, $P_{cs}(4459)$ [$c\overline{c}uds$]
- More data are desired for marginal evidence or observation, determination of spin-parity
- new results based on higher statistics data can be expected
 Xiao-Rui LYU
 PIC2022, Tbilisi, Georgia

Thank you! 谢谢!

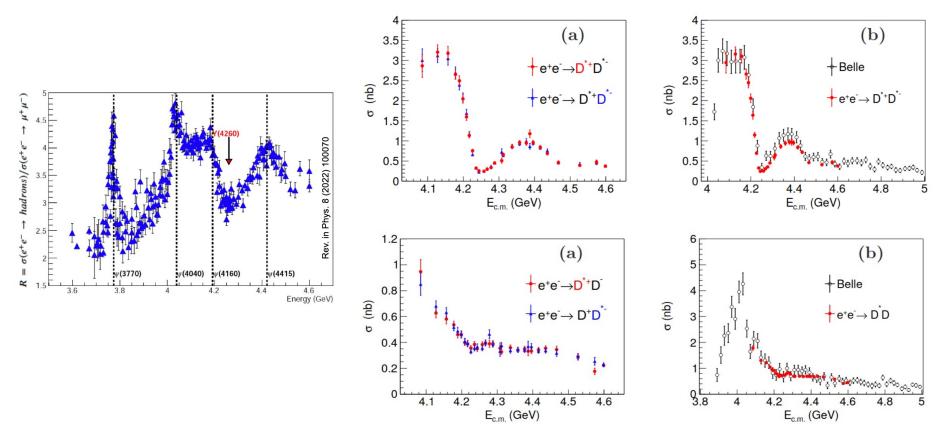

PIC2022, Tbilisi, Georgia

63


X(3872) absolute decay rate

- Determination of the absolute branching fraction for $B^{\pm} \rightarrow X(3872)K^{\pm}$ leads to the absolute branching fraction of $X(3872) \rightarrow \pi^{+}\pi^{-}J/\psi$
 - \rightarrow nature of X(3872)

Measure K momentum spectrum in B rest frame.


BF(B⁺ → X(3872) K⁺) =(2.1 ±0.6±0.3)× 10⁻⁴ By using the measured product BF: (8.6 ±0.8)× 10⁻⁶ (from PDG) → BF(X(3872) → $\pi^+\pi^-J/\psi$) = (4.1±1.3) % Support X(3872) a molecular hypothesis.

EFENT Open charm cross sections

- essential to fully understand the XYZ states
- Important input for coupled-channel analysis

JHEP2022, 55 (2022)

- Good agreement with existing measurements, with best precisions
- Structure at 4.39 GeV in D*D*?

Xiao-Rui LYU