Physics in Collision 2022

The 41st International Symposium on Physics in Collision 5-9 September, 2022 | Tbilisi, Georgia

Search for Additional Higgs Bosons

PIC, Sep 7, 2022

EXPERIMENT

Keti Kaadze (Kansas State University) on behalf of the ATLAS and CMS Collaborations

LHC and Detectors

- Very successful Run I and 2 at the LHC: $\sqrt{s} = 8,13$ TeV, Lumi over 150/fb
 - Remarkable performance of LHC and the experiments
- Particle physics research at the energy frontier has entered an exciting era
 - Improve precision of measurements; Have an access to rare processes; Discover some for first time observed in pp collisions; Go after many exotic signatures in Higgs sector and beyond...

years Nature: ATLAS Nature: CMS HIGGS boson discovery

ATLAS+CMS Run1

Phys. Lett. B 805 (2020) 135425 arXiv:2207.00320

 125.09 ± 0.24 (± 0.21 stat ± 0.11 syst) GeV

Higgs Status

Mass measurement with I per mille precision

 Observation of all main production processes

• Observation of decays to bosons and μ_{VBF} third-generation fermions and evidence μ_{WH} of decay to $\mu\mu$ μ_{ZF}

CMS Run1 + 2016 $125.38 \pm 0.14 \ (\pm 0.11 \text{ stat} \pm 0.08 \text{ syst}) \text{ GeV}$ ATLAS Run1 + 4l Run2 124.94 ± 0.17 (± 0.17 stat ± 0.03 syst) GeV CMS 138 fb⁻¹ (13 TeV) $\kappa_F \frac{m_F}{\text{vev}}$ or $\sqrt{\kappa_V} \frac{m_V}{\text{vev}}$ ATLAS Run 2 ±1 SD (stat) Observed ±1 SD (stat ⊕ syst) ±1 SD (syst) $\mathbf{\Psi}$ $\kappa_c = \kappa_t$ κ_c is a free parameter Stat Syst SM prediction $0.97^{+0.08}_{-0.07}$ +0.07 ±0.04 -0.06 10^{-2} Leptons Quarks +0.08+0.090.80±0.12 -0.10 -0.07 и v_e V_{i} v_{\cdot} 10⁻³ d е S $1.44_{-0.25}^{+0.26}$ +0.16±0.21 Force carriers Higgs boson -0.15 Н 10^{-4} $1.29^{+0.22}_{-0.25}$ +0.09 $\kappa_{_V}$ 1.4 ±0.20 -0.14 κ_F or 1.2 μ_{ttH} 0.94^{+0.20}_{-0.19} +0.13±0.15 -0.12 0.8 μ_{tH} 6.05+2.66 +1.6910² 10^{-1} 10 Particle mass [GeV] 0.5 1.5 2.5 3 3.5 4.5 2 4 0 Parameter value

Keti Kaadze, Kansas State University

Additional Higgs?

- So far, the observed H(125) boson is consisted with the SM predictions.
 But...
- Observed phenomena (dark matter, neutrino masses, matter-anti matter asymmetry, etc..), hierarchy problem, can be explained by theories beyond the SM
- The new physics can manifest in the Higgs sector
 - Deviations in measurements of the H(125) properties from the SM
 - Exotic decay modes of the H(125) boson
 - Existence of additional neutral or charged scalar bosons

Extended Higgs Sector

- Minimal extensions Two-Higgs Doublet Model (2HDM): CP-even h and H, CP-odd A, Singly charged H[±]
- 2HDM with additional singlet (2HDM+S) leads to two additional neutral Higgs CP-even h and H, CP-odd A, h_s, A_s, Singly charged H[±]
- Higgs Triplet Models (HTMs) extend the sector by additional scalar triplet: Presence of doubly-charged Higgs bosons H^{±±}

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \Rightarrow \mathcal{H}_{SM}$$
$$\begin{pmatrix} \phi^+_1 \\ \phi^0_1 \end{pmatrix} + \begin{pmatrix} \phi^+_2 \\ \phi^0_2 \end{pmatrix} \Rightarrow \mathcal{h}, \mathcal{H}, \mathcal{A}, \mathcal{H}^{\pm}$$
$$\begin{pmatrix} \phi^+_1 \\ \phi^0_1 \end{pmatrix} + \begin{pmatrix} \phi^+_2 \\ \phi^0_2 \end{pmatrix} + \mathbf{s} \Rightarrow \mathcal{h}_{(1,2,3)}, \mathcal{a}_{(1,2)}, \mathcal{h}^{\pm}$$

- In this talk the latest results on searches for additional Higgs bosons
 - Light neutral Higgs bosons
 - Heavy neutral Higgs bosons
 - Charged Higgs bosons

2HDM

type I All quarks & leptons couple to Φ_2 type II All *u*-type to Φ_2 and all *d*-type & ℓ to Φ_1 type X Both *u* & *d* types couple to Φ_2 , all ℓ to Φ_1 type Y Roles of two doublets reversed wrt type II

Туре	и	d	l
1	Φ2	Φ2	Φ2
Ш	Φ2	Φ1	Φ_1
III (X)	Φ_2	Φ_2	Φ_1
IV (Y)	Φ2	Φ1	Φ2

H→aa→µµbb

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20

25

30

35

40

 \rightarrow bbµµ)

, aa

B(H

- Couplings of a boson is proportional to mass μμbb final state balances high purity and high rate
- Using kinematic likelihood fit to improve $m_{\mu\mu}{}^{bb}$ and reduce background. Fit maximizes likelihood by shifting the b-jet energy within resolution to satisfy constraint $m_{\mu\mu} \simeq m_{bb}$.

Sig.R. 110 < $m^{KL}_{\mu\mu bb}$ < 140 GeV, $ln(L^{max})$ > -8, 15 < $m_{\mu\mu}$ < 65 GeV

$16 \text{ GeV} < m_a < 62 \text{ GeV}$

50

45

55

5 60 m_a [GeV]

- $H \rightarrow aa \rightarrow 4\gamma$
- Model independent analysis with four fully resolved photons
- Using BTD to separate signal and background
 - Photon identification, pT(a), smallet Δm_{a1a2} , ΔR_{a1} ,..
- Fit data, signal, background in range 110 < $m_{\gamma\gamma\gamma\gamma}$ < 180 GeV
- $15 \text{ GeV} < m_a < 62 \text{ GeV}, \gamma$ $g \text{ ODO} \qquad H \qquad a \text{ for } \gamma$ $g \text{ ODO} \qquad A \text{ for } \gamma$
- Signal model of $m_{\gamma\gamma\gamma}$ with double-sided CB function; Granularity of 0.5GeV for $m_a < 40$ GeV (I GeV for $m_a > 40$ GeV); CMS Preliminary 132 fb⁻¹ (13 TeV)

$\rightarrow H \rightarrow aa \rightarrow 4\gamma$, very low m_a

- Very different phase space; γγ merged into one photon candidate — Develop a dedicated convolutional NN to reconstruct γγ mass based on energy deposition in η-φ space; Validate on π⁰ candidate. 5
- Use MLE to determine compatibility of observed template with signal and bkg. models
 - Signal template: 2D diagonal from simulation

Keti Kaadze, Kansas State University

CMS-PAS-HIG-21-016

ATE UNITE TO A STATE OF A STATE O

$H \rightarrow Za \rightarrow \ell \ell + hadrons$

ATLAS arXiv:2004.01678

 $a \rightarrow s\bar{s}$

Obs

20

24

33

68

Exp

 19^{+7}_{-5}

 65^{+25}_{-18}

Limits on $\sigma(pp \rightarrow H)Br(H \rightarrow Za)$

Obs

17

20

18

22

27

40

78

120

340

 $a \rightarrow gg$

Exp

 16^{+6}_{-5}

 19^{+7}_{-5}

 20^{+8}_{-6}

 26^{+10}_{-7}

38+15

 75^{+29}_{-21}

 110^{+40}_{-30}

 320^{+130}_{-90}

- Motivated from extended Higgs sector, DM, couplings to down-type quarks suppressed
- The same final state expected from H→ZJ/Psi, H→Zη_c processes handles to probe Higgs-charm coupling
- Hadronic resonance is highly boosted using jet sub-structure variables and multilayer perceptron (MLP) classifier

a mass [GeV]

0.5

0.75

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Higgs in SUSY Cascade Decays interest: m(H₁) < m(Z)

- NMSSM with the singlino-like neutralino (χ_s^0) as LSP
- χ_s^0 has small coupling to other SUSY particles results; m(χ_s^0) << m(H₁) results in MET suppressed scenario

Pair of boosted light Higgs boson H₁→bb:
 AK8 jets passing double-b-tag discriminator

BSM $H \rightarrow \tau \tau$

e + 2 v 17%

TAU DECAYS

adrons + 1 v

- Improved strategy to search for BSM signals in di- τ spectrum: gg φ , bb φ , b φ productions of scalar boson; vector leptoquark
- Multiple channels, multiple categories depending on production and low/high mass ranges Dedicated observable for high/low mass search

BSM $H \rightarrow \tau \tau$

- Narrow resonance with SM-like pT spectrum and top/bottom relative contribution in ggΦ loop
- VLQ search
- MSSM three neutral Higgs boson

More of BSM $H \rightarrow \tau \tau$

- NMSSM with five neutral and two charged Higgs bosons
 - $h = H_{SM}$, 240 GeV $\le m_H \le$ 3000 GeV, $60 \text{ GeV} \le m_{hs} \le 2800 \text{ GeV}$
- Considering h($\tau\tau$)h_s(bb) final state with $\tau_h\tau_h$, $\tau_h\mu$, τ_h e signatures of di-tau system

Н

000000

000000

High Mass Scalar

ATLAS arXiv:2102.13405

Spin-0

- Search for a resonance in di-photon mass spectrum
- Motivated from extended Higgs sector: consider narrow (m > 160 GeV) and wide (m > 400 GeV) resonances
- As well as spin-2 graviton models: m > 500 GeV

2000

2500

m_x [GeV]

Cocal significance [σ]

0.5

0

High Mass $H \rightarrow ZZ$

- Consider $\ell\ell\ell\ell\ell$ and $\ell\ell\nu\nu$ final sates and ggH and VBF
 - Dedicated categorization and observables $m_{4\ell}$ and $m_T^{\ell\ell\nu\nu}$

 $\cos(\beta - \alpha)$

m_H [GeV]

Keti Kaadze, Kansas State University

High Mass H→WW

Using DNN for classification between signals and bkgs

Interpretations: SM-like couplings/decays, 2HDM/MSSM

continuum and the SM $H \rightarrow WW$ is taken into account

Consider different width scenarios; Interference with WW

Using m_T from DNN as final observable

CMS-PAS-HIG-20-016

Heavy Scalar $X \rightarrow YH$

- Motivated from NMSSM, Two-Real-Scala-Singlet extension of SM (TRSM)
- Focusing on kinematic region where
 - $m_Y < 2m_t$ Both Y and H decay to pair of b-quarks with highest BR: 4 quarks
 - 0.9 < m_X < 4 TeV, 60 < m_Y < 600 GeV collimated bb-pairs

Keti Kaadze, Kansas State University

H±→tb

- Highest branching fraction for heavy H[±]
 - Final state with single lepton and jets;
 Categorization based on Nj and Nbj

H±→HW

- Focusing heavy $H\pm$ production $m_{H\pm} >> m_t + m_b$
- m_H = 200 GeV, m_h = 125 GeV
- Considering $\ell \tau_h$ +3j and $\ell \tau_h \tau_h$ +2j final states using BDTG and m_T observables, rest.

Summary

- Very vibrant program at ATLAS and CMS to search for additional Higgs bosons
 - Light, heavy, and charged bosons
- No evidence of significant deviation from the SM background prediction
 - Improved analyses techniques and object identification let to broadening phase space for the searches
- Many of the Run 2 analyses are still ongoing. Stay tuned!

BACKUP

VBF $H^{\pm/\pm\pm} \rightarrow WZ/WW$

<u>CMS arXiv:2104.04762</u> <u>ATLAS arXiv:2207.03925</u>

Standard Model Production Cross Section Measurements

Status: February 2022

LHC / HL-LHC Plan

We are here! Twice more time to go! Twenty times more data to come! And before all those, Run 3 has 'just' started!

Looking Into the Future

CMS-FTR-18-011

CMS-FTR-18-019

CMS-FTR-21-001

3000 fb⁻¹ (13 TeV)

0.2

Stat. only

1.6

1.3

3.3

1.1

6.5

0.71

Can there be non-SM decay?

- The SM does not explain our current observations of the universe (dark matter, naturalness, matter-antimatter asymmetry, etc..)
- The Higgs is the unique particle of its kind this could be one of the keys to beyond the SM physics
 Composite Higgs with LFV decays

CM