

Results on SUSY and Exotics at LHC

(incl. non-conventional signatures)

Da XU (IHEP, CAS)
on behalf of ATLAS, CMS and LHCb experiments
PIC 2022

Outline

Supersymmetry

Image credit: M. Rimoldi

The SUSY production @ 13TeV

Strong SUSY: larger cross-section; energetic jet activity.

Electroweak SUSY: smaller cross-section; less jet; cleaner signature.

Gluino and squark (incl. 3rd gen)

Gluino/squark search with jets

· Target cascade decays of squarks or gluiness into jets + LSP (Etmiss).

Lightest SUSY Particle (LSP)

— Etmiss

0-step decay

- Gluino: >= 4 jets
- Squark: >= 2 jets

1-step decay via chargino

- Gluino: >= 4-8 jets
- Squark: >= 2-6 jets

Gluino search with jets

- $\begin{array}{c} q & \overline{q}' \\ p & & W^{\pm} \\ \tilde{\chi}_{1}^{0} & & \tilde{\chi}_{1}^{0} \\ p & & \tilde{g} & & \tilde{\chi}_{1}^{0} \\ p & & & q & \overline{q}' \end{array}$
- Target cascade decays of squarks or gluinos into jets + LSP (Etmiss).
- Considering one W decay leptonically, one can require final state with one isolated lepton —> highly suppress multi-jet background
- · Categorized in 2J, 4J and 6J + binned in meff and mT
- · Dominant background W+jets and ttbar estimated in CR

Gluino search with jets

CMS Simulation Preliminary 138 fb⁻¹ (13 TeV)

Total Background

Inclusive n, ≥ 1 n, ≥ 2

Target cascade decays of squarks or gluinos into jets + LSP (Etmiss).

The same SUSY scenario targeted by CMS

- · Requirement on the azimuthal angle between the lepton and the reconstructed leptonic W boson candidate
- · Top quark and W boson tagging based on machine-learning

Gluino search with large jet multiplicities

Gtt decay

m_ã [GeV]

- Target LONG cascade decays of gluinos into large jet activity.
- Large jet activity—> events with >=8,9,10,11,12 jets

2-step decay

- Include b-jet if top in the decay chain—> event categories in 0,1,2 b-jets
- · Large Etmiss from stable LSPs(RPC case); no large Etmiss in RPV case.

CMS 137 fb⁻¹ (13 TeV) $\widetilde{g}\widetilde{g}$ production, $\widetilde{g} \rightarrow qqWZ\widetilde{\chi}_{1}^{0}$; $m(\widetilde{\chi}_{1}^{0})=[m(\widetilde{g})+m(\widetilde{\chi}_{1}^{0})]/2$, $m(\widetilde{\chi}_{1}^{0})=[m(\chi_{1}^{0})+m(\widetilde{\chi}_{1}^{0}))]/2$ q̃ q̃, q̃ → t t̄ X̄ Approx NNLO+NNLL exclusion CL upper limit on cross section [pb] Observed ± 1 σ_{theor} 1600 √s=13 TeV, 139 fb⁻¹. Limits at 95% CL Expected Limit (±1 σ_{evo}) 1400 Observed Limit (±1 σ_{theory}^{SUSY} ÁTLAS, 36,1 fb⁻¹ 1200 1000 1000 800 800 600 600 400 400 200 200 1000 1400 1600 1800 1000 1500 2000

Decay via RPV coupling

Gluino search with leptons

- Target LONG cascade decays of one lepton, same-sign(SS) two or three leptons.
- · Such long cascade decays can also be targeted by lepton final states
- · i.e. when leptons come from different decay chain, requiring SS leptons can highly suppress SM.
- · i.e. one lepton + large radius jets rich in top-quark —> Gtt model

Gluino summary

3rd generation: Stop search

Stop, sbottom summary

Electroweakino

Phenomenology depends on wino-bino-higgsino mixing, mass hierarchy, and decay channels.

Wino-bino/Slepton search with 2L0J

Targeting moderately compressed regions, mass splitting close to W boson mass.

Slepton production

- Light smuon and LSP could explain g-2 anomaly through loop corrections
- Same-flavour opposite sign final state,
 0 or 1 jet SR

Chargino production

- Same flavour and different flavour opposite sign final state
- Boosted Decision Tree approach, SRs binned in BDT output

Wino-bino summary

Higgsino summary

- For Higgs dominant decay mode, <u>4b</u> channel wins
- For Z dominant decay mode
 - Low mass region: <u>4L</u> channel
 - High mass region: <u>OL</u> wins (w/ boost strategy)
 - Overall region: <u>2L2J</u> NEW! channel wins!

Slepton summary

- Search 1: Final states with 2 hard e/ μ (pT>25GeV) —> target high mass region!
- Search 2: Compressed analysis $\frac{2 \text{ soft e/}\mu}{pT_\mu}$ (pT_e>4.5GeV and pT_ μ >3GeV) + ISR-jet —> target small mass splitting region!
- Search 3: 2 hadronic tau analysis combining di-tau trigger and Etmiss trigger

Slepton summary

- Advanced Search 1: Final states with $\frac{2 \text{ hard e/}\mu}{\mu}$ (pT>25GeV) —> target *moderate* mass region! NEW!
- Search 2: Compressed analysis $\frac{2 \text{ soft e/}\mu}{pT_\mu}$ (pT_e>4.5GeV and pT_ μ >3GeV) + ISR-jet —> target small mass splitting region!
- Search 3: <u>2 hadronic tau</u> analysis combining di-tau trigger and Etmiss trigger

Exotics (non SUSY)

- Leptoquarks (LQ)
- New gauge bosons
- New fermions
- Dark matter

•

LQ search

- · What?
- Hypothetical particles with non-zero baryon and lepton number
- Carry color charge and fractional electric charge
- Decay into quark-lepton pair
- Can be a scalar or a vector particle

- Why ?
- Appear in many BSM scenarios, relate quark and lepton sector
- Can explain observed deviations from lepton universality in B-meson decays, g-2 anomaly etc.

Pair produced LQ

Single LQ production

LQ mediator

Pair produced LQ

Mixed-Generation LQ

There is a broad/complementary program underway (well beyond the preferred decay modes by the B anomalies) and several of these results will be combined.

Pair produced LQ

LQ mix pair decays via tl, into 3L/4L FS

LQ3 pair decays via bτ

The tl result provides improved limits up to 1.6 TeV w.r.t. previous summary; Scalar LQ shown. The mass limits for vector LQ reach up to 2 TeV.

Single LQ

- Single LQ decay via bτ, into 2τ+b FS
- Combined τlep-τhad and τhad-τhad channels are exploited

LQ as a mediator

Non-resonant production of $\tau \tau$ or τ +MET via t-channel LQ exchange

Nonresonant production start to contribute more significantly at higher values of λ

Mild excess found in the non-resonant search, which is sensitive to the region favored by the B anomalies

New gauge bosons

- Spin-1 W', Z'
 - In many models, e.g. composite Higgs
 - Possible solution to hierarchy problem
- Axion-like particles (spin-0 pseudoscalars)
 - Specific case of axion is a solution to Strong CP problem
 - DM candidate

138 fb⁻¹ (13 TeV)

W', Z' search

• W' \rightarrow Z'W; Z' \rightarrow qq giving rise to two highenergetic jets, while a W decays leptonically

 Key var: inv.mass reconstructed from lepton and jets

W' fermion couplings are similar to SM W boson except the additional W'→ tb due to higher boson mass

Model-independent limits for X-jjl: weaker limits for broader resonances

Searches for heavy resonances V'

A combination of various V'->VV/VH and leptonic channels, exploring Heavy Vector Triplet (HVT) model

Analysis	leptons	$E_{T_{miss}}$	jets	b-tags	Discr.	Ref
$WW/WZ \rightarrow qqqq$	0	Veto	≥2J	-	m_{VV}	[10]
$WZ \rightarrow \nu \nu qq$	0	Yes	≥1J	0	m_{VV}	[11]
$WZ \rightarrow \ell \nu qq$	1e, 1μ	Yes	≥2j, ≥1J	0, 1, 2	m_{VV}	[11]
$WZ \rightarrow \ell\ell qq$	$2e, 2\mu$	-	≥2j, ≥1J	0	m_{VV}	[11]
$WZ \to \ell \nu \ell \ell$	$3 \subset (e, \mu)$	Yes	-	0	m_{VV}	[12]
$WH \rightarrow qqbb$	0	Veto	≥2J	1, 2	m_{VH}	[13]
$ZH \rightarrow \nu \nu bb$	0	Yes	≥2j, ≥1J	1, 2	m_{VH}	[15]
$WH \rightarrow \ell \nu bb$	1e, 1μ	Yes	≥2j, ≥1J	1, 2	m_{VH}	[14]
$ZH \rightarrow \ell\ell bb$	2e, 2μ	Veto	≥2j, ≥1J	1, 2	m_{VH}	[15]
$\ell \nu$	1e, 1μ	Yes	-	-	m_T	[17]
τν	1τ	Yes	-	-	m_T	[18]
$\ell\ell$	≥2e, ≥2 <i>µ</i>	-	-	-	$m_{\ell\ell}$	[16]

Similar sensitivity reach between ATLAS and CMS results

(Pseudo)scalar bosons search

Target signal models of new spin-0 particles with scalar, pseudoscalar, or Higgs-like couplings; Produced with dilepton resonances or top associate production; Consider 7 orthogonal channels according to NlepNtau

New fermions

- Vector-like quarks (VLQ)
 - Present in various scenarios (extra dimensions, Little Higgs,...) trying to solve the hierarchy problem;
 - colored spin-1/2 fermions;
 - in simplified models VLQ mix with their SM partners to regulate the Higgs boson mass
- Excited states of quarks/leptons (q*, l*)

Vector-like Taus

Similar sensitivity reach between ATLAS and CMS results

Vector-like T quark

Vector-like T quark, decaying via Zt/Wb/Ht

Pair production

Single production

Mono top result currently placing the most restrictive limits for single production of a vector-like T singlet

Pair and single production searches are complementary: pair production just depends on the VLQ mass, but cross section steeply falling; single production allows to probe up to higher VLQ mass, but depends on the coupling strength kappa.

Dark matter

- What ?
 - · Various invisible scenarios...

Semi-visible jets in strongly-interacting dark sectors

-> one of the jets is aligned with the missing energy

a final state consisting of SM hadrons and dark hadrons, governed by the *R*inv fraction

Why search for long lived particles?

Detector-Prompt

 10^{5}

 10^{2}

 10^{-27}

 10^{-23}

 10^{-19}

Many SM particles are long-lived!

 10^{-11}

Proper Lifetime τ [s]

Decay suppression also plays in a variety of BSM scenarios.

 10^{-15}

LLP model essentials

- * (nearly) mass-degenerate
- * small couplings
- * highly virtual intermediate state

 10^{5}

 10^{1}

https://doi.org/10.1016/j.ppnp.2019.02.006

 10^{-7}

Detector-Stable

Detector signature

- Anomalous Ionization
- Delayed Detector Signals
- Disappearing Tracks
- Displaced Tracks
- Displaced Vertices

•

Displaced jets

Search for LLPs produced in association with a Z boson

- The LLPs are assumed to decay to a pair of SM quarks that are identified as displaced jets.
- Triggers and selections based on Z boson decays to electron or muon pairs improve the sensitivity to light LLPs (down to 15 GeV)
- Displaced jet is defined as a jet that passes specified selections made on the three tagging variables: jet impact parameter significance, jet transverse angle, the ratio of the summed- p_T track

Three tagging variables: discriminating signal from background

Displaced lepton and jets

Search for long-lived dark photons from Higgs decay

- Search for LLP decays into collimated pairs of leptons and light hadrons
- A γ_d decay into a displaced muon pair is expected to leave two or more collimated stand-alone MS tracks, expected to have very little nearby track activity in the ID
- A γ_d decaying into a displaced electron or quark pair leads to energy deposits in the calorimeters reconstructed as a single jet with low EM fraction (the ratio of the energy deposited in the EM calorimeter to the total jet energy)
- Significantly higher sensitivity than previous searches for light LL neutral particles to collimated pairs of fermions.

Displaced di-muon vertex

Search for LL exotic particles decaying to a pair of muons

- Interpretation on the hidden Abelian Higgs model: Higgs decays to a pair of long-lived dark photons
- Signature is a pair of OS charged µs originating from a common secondary vertex spatially separated from the pp interaction point
- Uses μ from tracker+MS, MS-only, or mix

Displaced vertex

Search for massive LLP decaying semileptonically into a μ and two quarks.

- Di-LLP production via a scalar particle h^0
- · LLP(neutralino) $\rightarrow \mu qq$
- · A displaced vertex made of charged tracks accompanied by an isolated high pT μ

Benefits from LHCb:

- Excellent vertex reconstruction provided the LHCb vertex locator VELO
- Low trigger p_T threshold allows exploring relatively small LLP masses
- · LHCb is probing a rapidity region only partially accessible by other LHC experiments

Non-pointing photons

Search for delayed and non-pointing photons originating from displaced decay of a neutral LLP, which can escape the direct detection.

- Delayed and non-pointing photon due to the opening angle between the γ and LSP.
- Take advantage of potential Higgs to BSM branching ratio (~13%).

 Schematic showing the calculation of the photon "pointing" value using LAr calorimeter layers' barycenter information → Key discriminants are pointing and timing measurements from the LAr calorimeter.

Summary

- * A broad overview on the SUSY, Exotic, LLP searches in LHC is presented with full Run2 data analyzed.
- * No discovery yet, the limits are probed in new/challenge scenarios, with various novel techniques developed.
- * More challenge signatures to come, including combinations, pMSSM interpretations. Hopefully more new ideas will be inspired! ? **P
- * For more, please visit: <u>ATLAS Publication Web</u> and <u>CMS</u>
 <u>Publication Web</u>

Extra slides

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2022

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Mass scale [TeV]

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Mass scale [TeV]

Status: July 2022 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ Jets† E_T^{miss} $\int \mathcal{L} dt [fb^{-1}]$ Model Limit Reference ADD $G_{KK} + g/q$ 0 e, μ, τ, γ 139 11.2 TeV n = 2 2102.10874 dimensions Yes ADD non-resonant yy 2γ 36.7 Ms 8.6 TeV n=3 HLZ NLO 1707.04147 2i M_{th} ADD OBH 139 9.4 TeV n = 61910.08447 ADD BH multijet M_{th} ≥3 j 9.55 TeV n=6, $M_D=3$ TeV, rot BH 1512.02586 3.6 RS1 $G_{KK} \rightarrow \gamma \gamma$ 2 % 139 G_{KK} mass 4.5 TeV $k/\overline{M}_{Pl} = 0.1$ 2102.13405 Bulk RS $G_{KK} \rightarrow WW/ZZ$ multi-channel 36.1 G_{KK} mass 2.3 TeV $k/\overline{M}_{Pl} = 1.0$ 1808.02380 Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ 1 e, µ 2j/1J Yes 139 GKK mass 2.0 TeV $k/\overline{M}_{Pl} = 1.0$ 2004.14636 Bulk RS $g_{KK} \rightarrow tt$ $1e, \mu$ ≥1 b, ≥1J/2j 36.1 gkk mass $\Gamma/m = 15\%$ 1804.10823 3.8 TeV 1 e, µ Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 2UED / RPP ≥2 b, ≥3 j 36.1 KK mass 1.8 TeV 1803.09678 SSM $Z' \rightarrow \ell \ell$ 2 e, µ 139 Z' mass 5.1 TeV 1903.06248 2.42 TeV SSM $Z' \rightarrow \tau \tau$ 2τ 36.1 Z' mass 1709.07242 Leptophobic $Z' \rightarrow bb$ 2 b 36.1 Z' mass 2.1 TeV 1805.09299 Leptophobic $Z' \rightarrow tt$ 4.1 TeV ≥1 b, ≥2 J $0e, \mu$ Yes 139 Z' mass $\Gamma/m = 1.2\%$ 2005.05138 SSM $W' \rightarrow \ell v$ $1e, \mu$ Yes 139 W' mass 6.0 TeV 1906.05609 SSM $W' \rightarrow \tau \nu$ 139 W' mass 5.0 TeV ATLAS-CONF-2021-025 17 Yes SSM $W' \rightarrow tb$ ≥1 b, ≥1 J 139 W' mass 4.4 TeV ATLAS-CONF-2021-043 HVT $W' \rightarrow WZ \rightarrow \ell \nu qq \text{ model B}$ 2j/1J Yes 139 W' mass 4.3 TeV $g_V = 3$ 2004.14636 2 j (VBF) HVT $W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell' \text{ model C}$ 340 GeV Yes 139 W' mass $g_V c_H = 1, g_f = 0$ ATLAS-CONF-2022-005 HVT $W' \rightarrow WH \rightarrow \ell \nu bb \mod B$ 139 3.3 TeV $g_V = 3$ 1-2 b, 1-0 j Yes W' mass 2207.00230 HVT $Z' \rightarrow ZH \rightarrow \ell\ell/\nu\nu bb$ model B 0,2 e, μ 3.2 TeV 1-2 b, 1-0 j Yes 139 Z' mass $g_V = 3$ 2207.00230 LRSM $W_R \rightarrow \mu N_R$ 80 W_R mass 5.0 TeV $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$ 1 J 1904.12679 CI qqqq 2j 37.0 1703.09127 21.8 TeV 777 CI llgg 2 e, µ 139 35.8 TeV 2006.12946 \overline{c} $g_* = 1$ 139 2105.13847 2 e 1.8 TeV CI eebs 1 b Cl µµbs 2μ 139 2.0 TeV $g_* = 1$ 2105.13847 1 b CI tttt ≥1 e,µ ≥1 b, ≥1 j Yes 36.1 ٨ 2.57 TeV $|C_{4t}| = 4\pi$ 1811.02305 Axial-vector med. (Dirac DM) 0 e, μ, τ, γ 1 - 4iYes 139 2.1 TeV $g_0=0.25, g_v=1, m(\chi)=1 \text{ GeV}$ 2102.10874 Pseudo-scalar med. (Dirac DM) $0e, \mu, \tau, \gamma$ 1 - 4j139 m_{med} 376 GeV $g_q=1, g_{\chi}=1, m(\chi)=1 \text{ GeV}$ Yes 2102.10874 Vector med. Z'-2HDM (Dirac DM) 0 e, μ 2 b 139 m_{med} 3.1 TeV $\tan \beta = 1$, $g_Z = 0.8$, $m(\chi) = 100$ GeV 2108.13391 Pseudo-scalar med, 2HDM+a multi-channel 139 m_{med} 560 GeV $\tan \beta = 1$, $g_{\nu} = 1$, $m(\chi) = 10$ GeV ATLAS-CONF-2021-036 Scalar LQ 1st gen LQ mass $\beta = 1$ ≥2 j 139 1.8 TeV Yes 2006.05872 Scalar LQ 2nd gen ≥2 j 2μ 139 LQ mass 1.7 TeV $\beta = 1$ 2006.05872 Yes Scalar LQ 3rd gen LQ" mass $\mathcal{B}(LQ_3^o \rightarrow b\tau) = 1$ 2 b 139 1.2 TeV 2108.07665 17 Yes Scalar LQ 3rd gen ≥2 j, ≥2 b LQ[®] mass $\mathcal{B}(LQ_3^u \rightarrow tv) = 1$ 139 0 e, µ 1.24 TeV Yes 2004.14060 Scalar LQ 3rd gen LQ^{il} mass $\geq 2 e, \mu, \geq 1 \tau \geq 1 j, \geq 1 b$ 139 1.43 TeV $\mathcal{B}(LQ_3^d \to t\tau) = 1$ 2101.11582 Scalar LQ 3rd gen LQ^d mass $0e, \mu, \geq 1\tau 0 - 2j, 2b$ 1.26 TeV $\mathcal{B}(LQ_3^d \rightarrow bv) = 1$ 139 2101.12527 Vector LQ 3rd gen LQ mass $\mathcal{B}(LQ_1^V \to b\tau) = 0.5$, Y-M coupl 139 1 7 2 b 1.77 TeV 2108.07665 Yes VLQ $TT \rightarrow Zt + X$ $2e/2\mu/\geq 3e, \mu \geq 1 \text{ b}, \geq 1 \text{ j}$ 139 T mass 1.4 TeV SU(2) doublet ATLAS-CONF-2021-024 $VLQ BB \rightarrow Wt/Zb + X$ SU(2) doublet multi-channel 36.1 B mass 1.34 TeV 1808.02343 $VLQ T_{5/3} T_{5/3} | T_{5/3} \rightarrow Wt + X$ $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) = 1$ $2(SS)/\geq 3 e, \mu \geq 1 b, \geq 1 j$ 36.1 T_{5/3} mass 1.64 TeV 1807.11883 VLQ $T \rightarrow Ht/Zt$ ≥1 b, ≥3 j SU(2) singlet, $\kappa_T = 0.5$ $1e, \mu$ Yes 139 T mass 1.8 TeV ATLAS-CONF-2021-040 VLQ Y → Wb 1 e. u ≥1 b, ≥1 i Yes 36.1 Y mass 1.85 TeV $\mathcal{B}(Y \to Wb) = 1$, $c_R(Wb) = 1$ 1812.07343 $VLQ B \rightarrow Hb$ ≥2b, ≥1j, ≥1J SU(2) doublet, $\kappa_B = 0.3$ $0e\mu$ 139 B mass 2.0 TeV ATLAS-CONF-2021-018 VLL $\tau' \rightarrow Z\tau/H\tau$ ≥1 j SU(2) doublet ATLAS-CONF-2022-044 multi-channel Yes 139 τ' mass 898 GeV Excited quark $q^* \rightarrow qg$ 2j 139 q* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1910.08447 Excited quark $q^* \rightarrow q \gamma$ 1 % 11 36.7 only u^* and d^* , $\Lambda = m(q^*)$ q* mass 5.3 TeV 1709.10440 Excited quark $b^* \rightarrow bg$ 1 b, 1 j 139 3.2 TeV b* mass 1910.0447 Excited lepton \(\ell^* \) 3 e, µ 20.3 l* mass 3.0 TeV $\Lambda = 3.0 \text{ TeV}$ 1411.2921 Excited lepton v* 1.6 TeV 3 e, µ, τ 20.3 v* mass $\Lambda = 1.6 \text{ TeV}$ 1411.2921 2,3,4 e. µ Type III Seesaw ≥2 j 139 Nº mass 910 GeV Yes 2202.02039 LRSM Majorana y 2μ 2i 36.1 N_R mass $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ 3.2 TeV 1809.11105 Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 2,3,4 e, μ (SS) various H^{±±} mass 350 GeV DY production 2101.11961 139 H±± mass Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ 2,3,4 e, µ (SS) 1.08 TeV DY production 139 ATLAS-CONF-2022-010 DY production, $\mathcal{B}(H_{\iota}^{\pm\pm} \rightarrow \ell \tau) = 1$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ 3 e, µ, τ 400 GeV 20.3 1411.2921 multi-charged particle mass Multi-charged particles 139 1.59 TeV DY production, |q| = 5eATLAS-CONF-2022-034 Magnetic monopoles DY production, $|g| = 1g_D$, spin 1/2 monopole mass 2.37 TeV 1905.10130 34.4 $\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} partial data 10

full data

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

Small-radius (large-radius) jets are denoted by the letter i (J).

Overview of CMS EXO results

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle.

LHCP 2020