Double Beta Decay Status and Prospectives

Alberto Garfagnini

Physics in Collision, Tblisi, September 8 2022

Istituto Nazionale di Fisica Nucleare

 it's a second order nuclear transition with two neutrons decaying into two protons:

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + \dots$$

2-neutrinos double- β decay ($2\nu\beta\beta$)

- it's a second order process, allowed in the Standard Model of Particle Physics
- first suggested by Goeppert-Mayer in 1935
 [M. Goeppert-Mayer, Phys. Rev., 48 (1935) 512]

•
$$(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

- it has been measured in several isotopes
- $T_{1/2}^{2
 u}$ in the range $10^{19}-10^{24}$ yr

Double beta decay

• it's a second order nuclear transition with two neutrons decaying into two protons:

$$(A,Z) \rightarrow (A,Z+2) + 2e^- + \dots$$

Neutrinoless double- β decay ($0\nu\beta\beta$)

- foreseen by many extensions of the Standard Model of particle physics Particle Physics
- $(A, Z) \rightarrow (A, Z+2) + 2e^{-}$
- never observed so far, but allowed in several isotopes
- $T_{1/2}^{0
 u}>10^{26}~{
 m yr}$

Why search for neutrinoless double- β decay ?

- if observed, would show a violation of the lepton number $(\Delta L=2)$
- it's the only known way to probe the Majorana neutrino nature

- Black Box theorem ([Schechter and Valle Phys.Rev.D25 (1982) 774]):
- non-null Majorana mass component
- bulk of neutrino mass not given by black-box operator ([Duerr et al., JHEP 1106 (2011) 091])

Double- β decay experimental signatures

A. Garfagnini (UniPD/INFN-PD)

Double- β active isotopes

- \sim 35 isotopes available, 9 can be used for $0\nu\beta\beta$ searches
- to observe double β -decay, single β -decay must be forbidden due to energy conservation constraints

Isotope	Natural	Q_{etaeta}	
	Abundance [%]	[keV]	
⁴⁸ Ca	0.19	4262.96(84)	
⁷⁶ Ge	7.6	2039.04(16)	
⁸² Se	8.7	2997.9(3)	
⁹⁶ Zr	2.8	3356.097(86)	
¹⁰⁰ Mo	9.6	3034.40(17)	
¹¹⁶ Cd	7.5	2813.50(13)	
¹³⁰ Te	34.5	2526.97(23)	
¹³⁶ Xe	8.9	2457.83(37)	
¹⁵⁰ Nd	5.6	3371.38(20)	

A. Garfagnini (UniPD/INFN-PD)

How is $0\nu\beta\beta$ related to the neutrino mass

The simplest theory approach

- ullet assume exchange of a light-Majorana u
- possible in minimal extensions of the Standard Model (massive + Majorana ν)
- it is the dominant channel in most models

What we measure

$$\left(T_{1/2}^{0\nu}\right)^{-1} = G_{0\nu} \cdot |\mathcal{M}_{0\nu}(A,Z)|^2 \cdot |m_{ee}|^2$$

- $G_{0\nu}$: phase space factor (calculable)
- $m_{ee} = \left|\sum_{i} U_{ei}^2 m_i\right|$
- Uei : PNMS mixing matrix (complex) elements
- $\mathcal{M}_{0\nu}$: nuclear matrix element
- |m_{ee}| : effective Majorana mass

additional uncertainty from quenching of axial vector coupling (g_A)

[J. Liu et al., Phys. Lett. **B 760** (2016) 571, arXiv 1606.0488]

Source = Detector

- the source sample is active and acts simultaneously as detector of the $\beta\beta$ decay
- Pros :

high detection efficiency

provides the highest tested masses and best sensitivity, so far

• Cons :

serious limitations in the choice of the $0
u\beta\beta$ isotope

only few materials can satisfy the request to be at the same time the active material of a detector

 emblematic exceptions: ⁷⁶Ge (germanium diodes), ¹³⁶Xe (gas and liquid chambers) and ¹³⁰Te (bolometers)

Source \neq Detector

• use an external-source (or in homogeneous, or passive source) :

the electrons emitted by a very thin source sample (\sim 60 mg/cm^2 in NEMO3) are observed by means of external detectors (tracker, calorimeter)

- Pros :
- allow a full topological reconstruction of a $0\nu\beta\beta$ event
- much easier access to other physics channels (i.e. Majoron)
- in principle can deploy any $0\nu\beta\beta$ active isotope in the same detector
- Cons :
- much lower masses available
- very low detection efficiency

Experimental sensitivities

Mass, ΔE and BI at $Q_{\beta\beta}$ are crucial parameters for designing a $0\nu\beta\beta$ experiment

Energy resolution

- maybe the most relevant feature to identify the sharp $0\nu\beta\beta$ peak over an almost flat background
- very useful also to keep under control the background induced by the unavoidable tail of the $2\nu\beta\beta$ spectrum
- it represents a limiting factor in low resolving detectors

A. Garfagnini (UniPD/INFN-PD)

Isotopic Abundance

- another key ingredient in the choice of the $0\nu\beta\beta$ isotope
- in most of the cases, the values are in the few % range
- two significant extreme exceptions: ¹³⁰Te and ⁴⁸Ca
- ¹³⁰Te is the only case in which a high sensitivity is possible even with natural samples
- ⁴⁸Ca natural abundance is well below 1% → isotopic enrichment is indispensable
- to limit the detector size and since the background level scales roughly with the total mass of the detector, isotopic enrichment is a necessity for almost all next generation experiments

[O. Cremonesi and M. Pavan, Adv.High Energy Phys. 2014 (2014) 951432, arXiv: 1310.4692]

Isotope	$Q_{\beta\beta}$ (keV)	I.A.(%)	$G^{0\nu}$	$H^{0\nu}$
⁴⁸ Ca	4272	0.187	24.81	826.2
76 Ge	2039	7.8	2.36	49.6
82 Se	2995	8.73	10.16	198.1
96 Zr	3350	2.8	20.58	342.7
^{100}Mo	3034	9.63	15.92	254.5
110 Pd	2018	11.72	4.82	70.0
¹¹⁶ Cd	2814	7.49	16.70	230.1
124 Sn	2287	5.79	9.04	116.5
¹²⁸ Te	866	31.69	0.59	7.4
¹³⁰ Te	2527	33.8	14.22	174.8
¹³⁶ Xe	2458	8.9	14.58	171.4
¹⁴⁸ Nd	1929	5.76	10.10	109.1
150 Nd	3371	5.64	63.03	671.7
^{154}Sm	1215	22.7	3.02	31.3
^{160}Gd	1730	21.86	9.56	95.5
¹⁹⁸ Pt	1047	7.2	7.56	61.0

Sec. 2010.000.000

The Background Index (BI)

- another fundamental ingredient
- the possibility to reach the zero-background region, i.e. linear dependence on $m_{\beta\beta}$ and $T_{1/2}^{0\nu\beta\beta}$ is particularly appealing
- natural radioactivity of detector components (bulk or surface) is often the main background source
- external backgrounds originated outside the detector have also to be taken into account
- underground location is the usual and fundamental recipe to get rid of cosmic rays induced background (i.e. cosmogenic activations, neutrons, ...)
- a well designed effective shields may compensate the benefits of a very deep laboratory

Double Beta Decay Experiments around the World

GERDA and Majorana

- ^{76}Ge has a long history in the search for $0\nu\beta\beta$
- low isotopic abundance → need enrichment
- detector production is industrial standard
- superb energy resolution
- best result available from the GERDA experiment: GERDA is the first background-free experiment in $0\nu\beta\beta$ searches
- lowest background ever: $5.2 \cdot 10^{-4}$ counts/(keV kg yr)
- exposure: 127.2 kg yr ; $T_{1/2} > 1.8 \cdot 10^{26}$ yr
- the MAJORANA demonstrator experiment achieves a similar result:
- background index: $6.2 \cdot 10^{-3} \text{ counts/(keV kg yr)}$
- exposure: 65.5 kg yr; $T_{1/2} > 8.3 \cdot 10^{25}$ yr

⁷⁶Ge

GERDA Cryostat and Active Veto

 76 Ge

LEGEND: a staged approach

arXiv: 2107.11462

LEGEND-200:

- 200 kg, upgrade of existing GERDA infrastructure at Gran Sasso
- 2.5 keV FWHM resolution
- Background goal
 < 0.6 cts/(FWHM t yr)
 < 2x10⁻⁴ cts/(keV kg yr)
- Now in commissioning, physics data starting in 2022

LEGEND-1000:

⁷⁶Ge

- 1000 kg, staged via individual payloads (~400 detectors)
- Timeline connected to review process
- Background goal <0.025 cts/(FWHM t yr),<1x10⁻⁵ cts/(keV kg yr)
- · Location to be selected

LEGEND-200 (1 ton-yr) 90% CL exclusion sensitivity : $1 \cdot 10^{27}$ yr 3σ discovery sensitivity : $1 \cdot 10^{27}$ yr LEGEND-1000 (10 ton-yr) 90% CL exclusion sensitivity : $1.6 \cdot 10^{28}$ yr 3σ discovery sensitivity : $1.3 \cdot 10^{28}$ yr

CUORE / CUPID bolometers

CUORE with Particle ID = CUPID

$\textbf{CUORE} \quad \text{dominant BGND: surface } \alpha \text{ particles}$

130

le

scintillating crystal

or Cherenkov light in TeO₂

Heat Sink Copper Holder 'eak Thermal Coupling Absorber Crystal (TeO₂) Incident Radiation

R&D for highly radiopure scintillating crystals

$$\label{eq:2} \begin{split} &Zn^{82}Se \hfill \\ &Zn^{100}MoO_4.....CUPID-0\\ &LUCIFER, LUMINEU\\ &Li_2^{100}MoO_4.....dto\\ &^{40}Ca^{100}MoO_4.....AMoRE\\ &^{116}Cd^{100}MoO_4.....KINR-ITEP-DAMA \end{split}$$

Poda, Giuliani, arXiv:1711.01075

¹³⁰Te

Array of closely packed **988 TeO₂ crystals arranged in 19 towers** High Mass of TeO₂: **742 kg 206 kg of ¹³⁰Te, 188 kg of ¹²⁸Te, 0.5 kg of ¹²⁰Te**

[I. Nutini, talk at Neutrino 2022]

CUORE

- Data taking started in Spring 2017: detector commissioning and optimisation
- Physics data taking since early 2019, at operating temperature 11-15 mK. Uptime ~90%. Data taking rate ~50 kg/month

CUPID

130

CUPID baseline design

45 x 45 x 45 mm³ Li₂¹⁰⁰MoO₂ crystals

Crystal mass: 280 g

1596 total crystals

- 450 kg of Li₂¹⁰⁰MoO 95% enrichment in ¹⁰⁰Mo: 240 kg of ¹⁰⁰Mo
- 57 towers of 28 crystals. 14-floors of 2x1 crystal pairs. Gravity-assisted design

Ge light detectors with SiO anti-reflective coating

- Each crystal has top and bottom light detectors
- No reflective foils

Muon veto for muon-induced background suppression

KamLAND-Zen

- KamLAND, in operation at Kamioka mine (Japan) since 2002
- 1-kton high purity LS in a 6.5 m radius balloon
- search for 0
 uetaeta in 136 Xe : Q-value 2.458 MeV
- $\bullet\,$ ballon at the centre of the detector with ^{136}Xe loaded LS
- enrichment: 90%, dissolved at 3% in weight

Past KamLAND-Zen 400

320-380 kg of Xenon Data taking in 2011 - 2015

Present KamLAND-Zen 800

~750 kg of Xenon DAQ started in 2019

Image: second second

A. Garfagnini (UniPD/INFN-PD)

136

Future

~1 ton of 136Xe

Better energy resolution

KamLAND2-Zen

KamLAND-Zen 800 results

[Azusa Gando, talks at Neutrino 2022 and ICHEP 2022]

Internal 10 volume bins (1.57-m-radius spherical volume) × 3 time bins

¹³⁶Xe

KamLAND2Zen

¹³⁶Xe

[Azusa Gando, talks at Neutrino 2022 and ICHEP 2022]

 $\begin{array}{l} \mbox{Enlarge opening} \\ \mbox{General use: accommodate various devices such} \\ \mbox{as CdWO}_4, \mbox{Nal}, \mbox{CaF}_2 \mbox{ detectors} \end{array}$

New electronics

To improve background suppression. Tagging long lived isotope from cosmic ray spallation.

Scintillation inner balloon

BG reduction from Xe-LS container

Winstone cone & High QE PMT

Improve light collection efficiency and photo coverage

Brighter LS

Current LS ~8,000 photon/MeV LAB based new LS ~12,000 photon/MeV

$$\label{eq:scalar} \begin{split} \sigma(2.6 MeV) &= 4\% \rightarrow {\sim}2\% \\ \text{Target} \ \langle m_{\beta\beta} \rangle \ {\sim}20 \ meV \ in \ 5 \ yrs \end{split}$$

Most stringent limits **GFRDA** $T^{0
u}_{1/2}(^{76}{
m Ge}) > 1.8\cdot 10^{26} ~{
m yr}$ $S_{1/2}^{0
u}({
m ^{76}Ge}) > 1.8\cdot 10^{26}$ yr $\Rightarrow |m_{\beta\beta}| < (79 - 180) \text{ meV}$ Kaml AND-7en $T_{1/2}^{0\nu}(^{136}\text{Xe}) > 2.3 \cdot 10^{26} \text{ yr}$ $S_{1/2}^{0
u}(^{136}{
m Xe}) > 1.5\cdot 10^{26}$ yr $\rightarrow |m_{\beta\beta}| < (36 - 156) \text{ meV}$ CUORE $T_{1/2}^{0\nu}(^{130}\text{Te}) > 2.2 \cdot 10^{25} \text{ yr}$ $\rightarrow |m_{\beta\beta}| < (90 - 305) \text{ meV}$

Some results are better than sensitivity: sometimes luck plays a role A. Garfagnini (UniPD/INFN-PD)

nEXO

 $^{136}\mathsf{Xe}$

- Monolithic TPC with 5 tons of 90% enriched ¹³⁶Xe
- Located at Cryopit at SNOLAB
- Active water Cherenkov muon veto
- $\bullet\,$ energy resolution required: $\leq 1.2\%$

Charge sensing tile and in-LXe cold electronics

[Zepeng Li, talk at ICHEP 2022]

A. Garfagnini (UniPD/INFN-PD)

nEXO

 136 Xe

- nEXO completely explores the inverted mass ordering in almost all cases
- sensitivity to Majorana neutrino mass: $m_{\beta\beta} = 4.7-20.3$ meV

[Zepeng Li, talk at ICHEP 2022]

Courtesy Mark Chen

- 780t LS (2.2 g/L PPO in LAB)
- $\bullet\,$ currently data taking with unloaded LS
- 0νββ phase: natural Te (34% 130Te) loaded as metal organic complex (Te-diol)
- Te-systems ready for operations
- Full-scale Te-diol batches in 2022/23
- following demonstration of operations and approvals by SNOLAB, begin Te-loading in 2024
- original plan: load 0.5% (3.9t nat Te): $T_{1/2} > 2 \cdot 10^{26} {\rm \ yr}$
- R&D on higher (up to 3%) Te-loading ongoing
- 0.5% loading phase critical to assess performance and Te-related backgrounds

JUNO $0\nu\beta\beta$ future plans

Courtesy Yifang Wang

- The Jiangmen Underground Neutrino Observatory (JUNO) has been designed for mass ordering determination → (see Dmitry's talk)
- but JUNO has a rich physics program https://doi.org/10.1016/j.ppnp.2021.103927
- after completing the main physics program, upgrade for $0\nu\beta\beta$ searches with $^{nat}{
 m Te}$ or $^{136}{
 m Xe}$
- huge target mass (100 t scale) and aspired low background
- very high PMT coverage (78%), 3% energy resolution an 1 MeV
- R&D studies on Te-diol based LS:
- best performance so far with 0.6% Te-loading
- NO measurable difference compared to purified LAB (Att. length > 20~m)
- NO degradation after 6 months
- Relative light output: 60% 70% w.r.t un-loaded LS
- Ambitious goal: exploration of normal mass ordering

DARWIN

^{*nat*}Xe

[source: https://doi.org/10.48550/arXiv.2003.13407]

- main goal of the experiment: dark matter detection
- Out of 50 t ^{nat}Xe, 40 t as TPC active target, 3.6 t of ¹³⁶Xe
- employs a double-walled cryostat and TPC
- predicted sensitivity (10 yr exposure, 5 t fiducial mass)

• High Pressure Gaseous Xenon Time Projection Chamber with Electroluminescent Amplification

[Helena Almazán, talk at ICHEP 2022]

NEXT

- High Pressure Gaseous Xenon Time Projection Chamber with Electroluminescent Amplification
- 3D reconstruction of events is possible → improve background rejection

X (mm)

 $^{136}\mathsf{Xe}$

Comparison of future experiments sensitivities and parameters

Isotopes / Backgrounds / Exposures

[M. Agostini, et al., arXiv:2202.01787]

Sensitive Backgrounds and Exposures

[M. Agostini, et al., arXiv:2202.01787]

A. Garfagnini (UniPD/INFN-PD)

A World-wide effort towards double beta decay searches

[S. Schoenert, talk at Neutrino 2022]

https://science.osti.gov/np/nsac

"We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment."

5/31/22 Neutrino 2022 - S. Schönert, TUM

- Oct 2019: Roadmap document for the APPEC SAC on the future 0vββ decay experimental programme in Europe
- 0vββ town meeting London
- Roadmap update 2022, town meeting in Berlin, June 2022
- Outcome: Realize international portfolio LEGEND-1000, nEXO and CUPID with European partners
- LEGEND-1000 was evaluated extremely positively at the Portfolio review. Now being funded by DOE to move to the next step, CD-1

https://agenda.infn.it/event/27143/

APPEC "The international stakeholders in neutrino-less double beta decay research do agree in principle that the best chance for success is an international campaign with more than one large ton-scale experiment implemented in the next decade, with one ton scale experiment in <u>Europe</u> and the other in <u>North America</u>."

26

Summary

- the quest for neutrinoless double beta decay started more than 50 years ago and several techniques have been developed and refined over the decades
- an acceleration towards a ton-scale experiment happened in the last two years
- \bullet so far only limits have been set on several isotopes. The most stringent are on: $^{76}{\rm Ge},\,^{130}{\rm Te},$ and $^{136}{\rm Xe}$
- over the last two years, a down-selection procedure has started in North-Americare and Europe to convergence on a set of experiments contingent on funding: the current competitors are LEGEND-1000, nEXO and CUPID (see S. Schoenert talk at Neutrino 2022)
- several important experiments (and R&D) are planned in Asia as well: KL2Z, Amore, PandaX, and JUNO
- availability / costs of DBD isotopes plays an important role
- but the path to the bottom of the NO band is not clear and looks difficult. The performances and results of the current planned ton-scale experiment will definitely help to set the path