

PIC2022. Tbilisi

Dmitry V.Naumov (JINR)

Introduction: neutrino, nuclear reactors, physics case, top discoveries • Status of θ_{13} , Δm_{31}^2 measurements Reactor neutrino flux and spectrum: measurements, theory, anomalies Sterile neutrino searches Status of JUNO experiment New liquid scintillator technologies

Outline

Top discoveries with reactor neutrino experiments

$\overline{ u}_e$ discovery (Reines,Cowan)

Discovery (+solar experiments) of neutrino oscillation due to Δm_{21}^2

Geo-neutrino discovery (+BOREXINO) (2010, 2013, 2015)

1956

Discovery (+accelerator experiments) of neutrino oscillation due to Δm_{32}^2 and θ_{13}

Discovery of non-zero value of θ_{13}

2012

2005

Neutral weakly interacting lepton

Mix $(\theta_{13}, \theta_{12}, \theta_{23})$ with three families of charged leptons and W^{\pm} ν_i ℓ^-

Massive (meV): $m_2 \gtrsim 10$ $m_{heavy} \gtrsim 50$ $\sum m_i \lesssim 120$ $i \ \overline{m}_{\nu_e} \lesssim 900$ $\overline{m}_{\beta\beta} \lesssim 156$ $m_{light} \lesssim 500$

Oscillations Planck KATRIN KamLAND-ZEN

 W^+

Reactor Neutrino Experiments with km-scale baseline

[2105.08533]

[2203.02139]

• Three families: ν_1, ν_2, ν_3 - $\Gamma^{inv}_{W,Z}$ Cosmology

 $V \approx 0.37 \quad 0.58 \quad 0.7 \\ 0.39 \quad 0.59 \quad 0.68$

0.82

0.55

Unknowns

- Mass ordering $|\Delta m_{31}^2| \rightarrow \Delta m_{31}^2$
- $o m_{light} = ?$
- Ø Dirac or Majorana

$$\delta \delta_{CP} = ?$$

V unitarity

Accessible @reactors ;

0.15

4

Iow Enriched Uranium (LEU)

- 3-4 GW thermal power
- Consumes ²³⁵U. Produces ^{239,241}Pu
- Refuel every 1.5-2 years
- Extended core \emptyset few m
- $6 \cdot 10^{20} \overline{\nu}/s @ 3GW_{th}$

Fuel Evolution [2102.04614]

- 6ν /fission

High Enriched Vranium (HEV)

- 50-100 MW thermal power
- Almost pure ²³⁵U
- Refuel every 1-3 months
 - Compact core $\varnothing \simeq 0.5$ m

PROSPECT

- Three neutrino mixing
- Sterile neutrino: Δm_{41}^2 (eV²) $\simeq (2-10)$
- Spectrum @reactors
- Neutrino mass ordering
- Geo-, solar, atmospheric, Nucleon decay, SuperNova, DSNB neutrino

 (8×20)

 $1600 \\ \theta_{13}, \Delta m_{31}^2 \\ \simeq (10^{-2} - 10^{-1})$

52 000 distance, m $\Delta m_{31}^2, \Delta m_{21}^2, \theta_{21}, \theta_{13}$ $\simeq (10^{-5} - 10^{-2})$

Detection: inverse β -decay (IBD) $\overline{\nu}_e + p \rightarrow e^+ + n$ Prompt = e^+ ionisation + $e^+e^- \rightarrow \gamma\gamma$ Delayed = n capture $\rightarrow \gamma(\gamma...)$

Reactor neutrino detectors = Precision Instruments

Percent-level control of absolute detector efficiencies and energy scale (multiple) calibration sources, cosmogenics)

Run Time

Ex: Daya Bay

0.2 0.4 0.6	3 0.8 1 1.2 1.4 1.6 1.8 2 L[km]						
	Power [GW _{th}]	GdLS mass Near/ Far [t]	Distance Near/Far [m]	Overburden [mwe]	Running until	IBD detection correlated uncorrelated	
Daya Bay	17.4	2×2×20 4×20	365, 490 1650	250 860	2020	1.2% 0.13%	
Double Chooz	16.8	8 8 8	400 1050	120 300	Dec 2017	0.5% 0.2%	
RENO	8.5	16 16	290 1380	120 450	2025	0.97% 0.13%	

Ratio suppresses correlated uncertainties

 $\sim 1 - \sin^2 2\theta_{13}$

A decade of measurements

Three neutrino oscillation due to θ_{13} , Δm_{32}^2

Daya Bay@Neutrino 2022

Three neutrino oscillation due to θ_{13} , Δm_{32}^2 . Global picture

8.53	3 ± 0.24	2.8%
8.92	$2{\pm}0.63$	7.1% $_{ m sc}$
7.1	± 1.1	15.5% [/] nu/
8.6	± 1.2	14.0%
10.2	± 1.2	11.8%
9.52	$2^{+2.42}_{-0.80}$	16.9% 20
8.5	$^{+2.0}_{-1.6}$	21.2% $^{02}_{ m La}$

	2.454	± 0.057	2.3%	
	2.41	± 0.07	2.9%	
	2.49	$^{+0.06}_{-0.08}$	2.8%	
	2.40	$^{+0.08}_{-0.09}$	3.5%	
	2.40	$^{+0.11}_{-0.12}$	4.8%	• •
-	2.69	± 0.12	4.5%	
	2.31	$^{+0.11}_{-0.13}$	5.2%	
	2.48	$^{+0.28}_{-0.32}$	12.1%	
.8				

No running or planned experiment to surpass this precision

10

Reactor neutrino flux and spectrum Once θ_{13} determined (far/near cancelation), flux and energy spectrum are measured too Mueller et al. 1101.2663 1106.0687 Huber The flux is about 6% below of a new HM model (=Reactor Antineutrino

0 Both have issues: Anomaly, RAA) After 6% reduction the spectrum has a 'bump' @(4-6) MeV of prompt energy. 2.

Universe 2021, 7(7), 246

Pouble Chooz Nature Phys. 16 (2020) 558

Lines of research to resolve the reactor neutrino anomalies Sterile neutrino state o Improve ν flux calculation method A) Conversion method

3+1 ν model for the flux deficit $\Delta m^2 \approx 2 \mathrm{eV}^2, \sin^2 2\theta \approx 0.1$

PRD 83 073006

B) Summation method (SM) = Ab-initio PRL 123, 022502

Why Sterile Neutrino?

What is Sterile Neutrino?

Sterile state = a coherent superposition of ν₁, ν₂, ν₃, ν₄...(similar to flavor) with vanishing interaction amplitude with W,Z
 NB! ν₁, ν₂, ν₃, ν₄...do interact with W,Z

- 3-neutrino oscillation can not explain the rate deficit at $L \ll 1 \, \text{km}$
- 4 SM-neutrino excluded by Z lifetime and cosmology
- If oscillations wanted —> a smart idea is required

pedagogical introduction 1901.00151

Lots of experimental searches for the Sterile Neutrino

- Θ_{13} near detectors (Daya Bay, RENO, Double Chooz)
- SBL reactor experiments (NEOS (-II), STEREO, PROSPECT, DANSS, Neutrino-4, and more) Radioactive sources (BEST)

Current status

- No sterile neutrino state is discovered
- Neutrino-4, BEST and NEOS interpret their observations as evidence for sterile neutrino state - in strong tension with other experiments

Sterile neutrino hypothesis is unlikely

 Δm^2_{41} [eV²

v flux and spectrum

Is V235 is $\sim 8\%$ smaller than HM expectation

- Daya Bay, RENO, NEOSS-II, STEREO
- Total Absorption Gamma Ray Spectroscopy (TAGS)
 Kopeikin et al PRD 104, L071301
 - $(S_{235}^{e}/S_{239}^{e})_{\text{ILL}} = 1.054(S_{235}^{e}/S_{239}^{e})_{\text{KI}}$
- Pu239 agrees with the HM model
- Disfavors the sterile neutrino hypothesis

PRL 118, 251801

2			
	9		
	1		
		_	
	i	-	
		_	

v flux and spectrum

0

Major effort to improve the nuclear data for summation method

235U disagrees

RAA is gone

RAA reduced to <2%

PRL 123, 022502

v flux and spectrum The bump is present in both ²³⁵U and ²³⁹Pu when compared to summation

- 0 or conversion models
- This similarity suggests 0 common origin or assumptions. The spectrum anomaly remains
- DB/H.M.(SM) 0.9 Ratio 0.8 SM/H.M 1.1 Ratio 0.9

JUNO experiment The major mission: <u>neutrino mass ordering determination</u> The requirements ×10³ 100F

Solar neutrinos: 1-2 orders of magnitude higher requirements on radio purity

IBD statistics - 20 kt detector mass (LS) - 26.6 GWth nuclear reactors

Background uncertainty - 650 m rock overburden - More than 99.5% muon veto efficiency Material screening Clean installation

Precision spectrum 6 - TAO satellite detector

Energy resolution

- Transparent LS

 $< 3 \% / \sqrt{E}$

1

Energy scale/nonlinearity uncertainty < 1%

Slide from Jie Zhao @Neutrino 2022 finished in Dec, 2021 Detector completion in 2023

Vertical tunnel: 563 m

Slope tunnel: 1265 m @

~650 m

Overburden:

JUNO Central Vetector Acrylic panels (220/265)

Stainless Steel Structure (bottom half ready)

production, performance tests, waterproof potting

Liquid scintillator

Four purification plants targeting U/Th $\mathcal{O}(10^{-17} - 10^{-16}) \, \text{g/g} \text{ and } 20 \, \text{m}$ attenuation length @430 nm

OSIRIS: 20t detector to monitor radio purity of LS before and during LS filling

Eur.Phys.J.C 81 (2021) 11, 973

JUNO Veto Detector

35 kton of ultrapure water serving as passive shield and water Cherenkov detector

- 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%
- Keep the temperature uniformity 21°C±1°C 0
- Quality: ²²²Rn < 10 mBq/m³, attenuation length 30~40 m 0

TOP tracker

Provide control muon samples to validate the track 0

reconstruction and study cosmogenic backgrounds

1.08_F 1.07 1.06 1.05 ц Ш .04 1.03 ш^{.%}1.02 1.01 0.99E 0.98

Taishan Antineutrino Observatory (TAO) The major mission: measure the reactor antineutrino spectrum at best accuracy ever SiPM with 94% coverage ACU Plastic Scintillator Top Shield (HDPE) - 4500 PEs/MeV (B- 3" PMT 0 Water Tank energy resolution < 2% @ 1 MeV 0 Overflow Tank

tao CDR

2000 IBD/day @30m from the nearest reactor.

\odot Gd-LS at -50 °C to lower the dark noise of SiPM

23

JUNO Physics Program

• NMO: $3\sigma@$ 6yrs

Ø Diffuse Supernova Neutrino Background: $3\sigma@$ 3yrs and $5\sigma@$ 10yrs

Nucleon decays: $8.3 \cdot 10^{33}$ yrs in 10 yrs

JUNO Physics Program Precision as for quarks: < 0.5 % for sin² 2 θ_{12} , Δm_{21}^2 , $|\Delta m_{31}^2|$

Improve meas. accuracy for solar ⁷Be, pep, CNO, ⁸B

Geo-neutrino: 400per year, 5 % in10 yrs

New detector technologies: opaque liquid scintillator

What: medium with $\lambda_{scat} \sim 1 \text{mm}$ elastic scattering and minimal absorption

Why: native self-segmentation

» Who: <u>LIQUIPO Consortsium</u>

Senefits: good PID ($e^{\pm}, \gamma, n, p, \ldots$)

Sunset in milk: an example of such medium

Opaque LS+fibres = highly segmented TPC stochastic light confinement

Topology (X,Y) direct & native (PID) → possible **sub-mm vertex precision**

47

Vanilla LiquidO: ID lattice (fibres along Z-axis only)

Anatael Cabrera (CNRS-IN2P3) — IICLab / Université Paris-Saclay (Orsav)

New detector technologies: hybrid of Cherenkov and Scintiallor

What: water based LS, slow scintillation light, fast PMT readout

Why: add directionality

Who: ANNIE, SANDI, EOS, Jinping IT, ... ν_{μ} Scintillation

Cherenkov

Neutrino experiments Onuclear reactors

- Improved our knowledge about
 - Neutrino $(\theta_{13}, \theta_{21}, \Delta m_{31}^2, \Delta m_{12}^2)$
 - Nuclear physics (flux and spectrum measurements)
- provided new possibilities to search for physics BSM

Are becoming very precise (sub-percent) instruments for further discoveries.

